Министерство образования и науки Российской Федерации ФГБОУ ВПО Российский химико-технологический университет им. Д.И. Менделеева

Новомосковский институт

Контрольная работа №1 по математике

Методические указания

Новомосковск 2012

УДК 517.4.43 ББК 22.161 К 651

Рецензенты:

кандидат технических наук, доцент Лопатин А.Г. (НИ (филиал) ГОУ ВПО РХТУ им. Д.И. Менделеева) кандидат технических наук, доцент Исаков В.Ф. (НИ (филиал) ГОУ ВПО РХТУ им. Д.И. Менделеева)

Составители: А.В. Соболев, В.А. Матвеев, Л.Д. Воробьева К 651 **Контрольная работа №1 по математике. Методические указания для студентов-заочников/** ФГБОУ РХТУ им. Д.И. Менделеева, Новомосковский ин-т; Сост.: А.В. Соболев, В.А. Матвеев, Л.Д. Воробьева. Новомосковск, 2012. – 44 с.

Кратко рассмотрены основные теоретические положения и примеры решения типовых задач по линейной алгебре, аналитической геометрии и комплексным числам. Приводятся задания для самостоятельного решения.

Предназначена для студентов заочного отделения всех специальностей, а также может быть полезна студентам дневного отделения.

Табл. 3.Ил. 1. Литерат.: 8 назв.

УДК 517.4.43 ББК 22.161

ОГЛАВЛЕНИЕ

ЛИНЕЙНАЯ АЛГЕБРА	4
1. Определители второго и третьего порядков и системы	
линейных уравнений с двумя и тремя неизвестными	4
2. Матрицы. Решение систем уравнений с помощью матриц	11
3. Решение системы уравнений методом Гаусса	19
ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ	21
1. Скалярное произведение	21
2. Векторное произведение	
3. Смешанное произведение	
АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ	
1. Координаты на прямой. Деление отрезка в данном	
отношении.	23
2. Прямоугольные координаты на плоскости. Простейшие	
задачи	24
3. Прямая на плоскости	
АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ	28
1. Плоскость	28
2. Прямая в пространстве	
КОМПЛЕКСНЫЕ ЧИСЛА	
1. Алгебраическая форма комплексных чисел	33
2. Тригонометрическая форма комплексного числа	
ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ	
Список рекомендуемой литературы	43

ЛИНЕЙНАЯ АЛГЕБРА

1. Определители второго и третьего порядков и системы линейных уравнений с двумя и тремя неизвестными

1.1 Определители второго порядка и системы линейных уравнений

Определитель второго порядка, соответствующий таблице элементов $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$, определяется равенством:

$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1$$

Система двух линейных уравнений с двумя неизвестными

$$\begin{cases} a_1 x + b_1 y = c_1 \\ a_2 x + b_2 y = c_2 \end{cases}$$

если ее определитель $\Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0$, имеет единственное

решение, которое находится по формулам Крамера:

$$x = \frac{\Delta_x}{\Delta} = \frac{\begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}; \ y = \frac{\Delta_y}{\Delta} = \frac{\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}$$

Если определитель $\Delta=0$, то система является либо несовместной, когда $\Delta_x\neq 0$ и $\Delta_y\neq 0$, либо неопределенной, если $\Delta_x=\Delta_y=0$. В последнем случае система сводится к одному уравнению (например, первому), второе же уравнение является следствием первого.

Линейное уравнение называется однородным, если свободный член этого уравнения равен нулю. Рассмотрим

систему двух линейных однородных уравнений с тремя неизвестными:

$$\begin{cases} a_1x + b_1y + c_1z = 0 \\ a_2x + b_2y + c_2z = 0 \end{cases}$$

Если $a_1/a_2 = b_1/b_2 = c_1/c_2$, то система сводится к одному уравнению (например, первому), из которых одно из неизвестных выражается через два других, значения которых являются произвольными.

Если условие $a_1/a_2 = b_1/b_2 = c_1/c_2$ не выполнено, то решение системы находится по формулам:

$$x = \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} \cdot t$$
; $y = -\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} \cdot t$; $z = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \cdot t$,

где t – любое действительное число.

Решить систему уравнений:

1)
$$\begin{cases} 5x - 3y = 1 \\ x + 11y = 6 \end{cases}$$

$$\Delta = \begin{vmatrix} 5 & -3 \\ 1 & 11 \end{vmatrix} = 5 \cdot 11 - 1 \cdot (-3) = 58, \ \Delta_{x} = \begin{vmatrix} 1 & -3 \\ 6 & 11 \end{vmatrix} = 1 \cdot 11 - 6 \cdot (-3) = 29,$$

$$\Delta_{y} = \begin{vmatrix} 5 & 1 \\ 1 & 6 \end{vmatrix} = 5 \cdot 6 - 1 \cdot 1 = 29$$

$$x = \frac{\Delta_{x}}{\Delta} = \frac{29}{58} = \frac{1}{2}; \ y = \frac{\Delta_{y}}{\Delta} = \frac{29}{58} = \frac{1}{2}$$
Other:
$$\left(\frac{1}{2}; \frac{1}{2}\right)$$
2)
$$\begin{cases} 2x + y = \frac{1}{5} \\ 4x + 2y = \frac{1}{2} \end{cases}$$

$$\Delta = \begin{vmatrix} 2 & 1 \\ 4 & 2 \end{vmatrix} = 2 \cdot 2 - 4 \cdot 1 = 0, \ \Delta_{x} = \begin{vmatrix} \frac{1}{5} & 1 \\ \frac{1}{3} & 2 \end{vmatrix} = \frac{1}{5} \cdot 2 - \frac{1}{3} \cdot 1 = \frac{2}{5} - \frac{1}{3} = \frac{1}{15} \neq 0,$$

$$\Delta_{y} = \begin{vmatrix} 2 & \frac{1}{5} \\ 4 & \frac{1}{3} \end{vmatrix} = 2 \cdot \frac{1}{3} - 4 \cdot \frac{1}{5} = \frac{2}{3} - \frac{4}{5} = -\frac{2}{15} \neq 0$$

 $\Delta = 0$; $\Delta_{x} \neq 0$; $\Delta_{y} \neq 0$.

Ответ: Система не имеет решений.

3)
$$\begin{cases} 3x + 2y = \frac{1}{6} \\ 9x + 6y = \frac{1}{2} \end{cases}$$

$$\Delta = \begin{vmatrix} 3 & 2 \\ 9 & 6 \end{vmatrix} = 3 \cdot 6 - 9 \cdot 2 = 0, \ \Delta_{x} = \begin{vmatrix} \frac{1}{6} & 2 \\ \frac{1}{2} & 6 \end{vmatrix} = \frac{1}{6} \cdot 6 - \frac{1}{2} \cdot 2 = 1 - 1 = 0,$$

$$\Delta_{y} = \begin{vmatrix} 3 & \frac{1}{6} \\ 9 & \frac{1}{2} \end{vmatrix} = 3 \cdot \frac{1}{2} - 9 \cdot \frac{1}{6} = \frac{3}{2} - \frac{3}{2} = 0$$

Система имеет бесконечно много решений.

Из двух уравнений выберем одно (например, первое). Тогда:

$$3x + 2y = \frac{1}{6}$$
; $3x = \frac{1}{6} - 2y$; $x = \frac{1}{18} - \frac{2}{3}y$

Otbet:
$$\left\{ \left(\frac{1}{18} - \frac{2}{3} y; y \right), y \in R \right\}$$

4)
$$\begin{cases} x - 2y + z = 0 \\ 3x - 5y + 2z = 0 \end{cases}$$

$$x = \begin{vmatrix} -2 & 1 \\ -5 & 2 \end{vmatrix} \cdot t = (-2 \cdot 2 - (-5) \cdot 1) \cdot t = t$$

$$y = -\begin{vmatrix} 1 & 1 \\ 3 & 2 \end{vmatrix} \cdot t = -(1 \cdot 2 - 3 \cdot 1) \cdot t = t$$

$$z = \begin{vmatrix} 1 & -2 \\ 3 & -5 \end{vmatrix} \cdot t = (1 \cdot (-5) - 3 \cdot (-2)) \cdot t = t$$
Other: $\{t, t, t\}, t \in \mathbb{R}$

(1, 1, 1), 1 = 1

1.2 Определители третьего порядка и системы линейных уравнений

Определитель третьего порядка, соответствующий таблице элементов

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

определяется равенством:

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$$

Минором данного элемента определителя третьего порядка называется определитель второго порядка, который получится, если в исходном определителе вычеркнуть строку и столбец, содержащие данный элемент. Алгебраическим дополнением данного элемента называется его минор, умноженный на $(-1)^k$, где k — сумма номеров строки и столбца, содержащие данный элемент. Таким образом, знак, который при этом приписывается минору соответствующего элемента определителя, определяется следующей таблицей:

В приведенном определителе в правой части стоит сумма произведений элементов первой строки определителя на их алгебраические дополнения.

<u>Теорема 1.</u> Определитель третьего порядка равен сумме произведений элементов любой его строки или столбца на их алгебраические дополнения.

<u>Теорема 2.</u> Сумма произведений элементов какой-либо строки (столбца) определителя на алгебраические дополнения элементов другой строки (столбца) равна нулю.

Свойства определителей:

- 1. Определитель не изменится, если строки определителя заменить столбцами, а столбцы соответствующими строками.
- 2. Общий множитель элементов какой-либо строки (или столбца) можно вынести за знак определителя.
- 3. Если элементы одной строки (столбца) определителя соответственно равны элементам другой строки (столбца), то определитель равен нулю.
- 4. При перестановке двух строк (столбцов) определитель меняет знак на противоположный.
- 5. Определитель не изменится, если к элементам одной строки (столбца) прибавить соответственные элементы другой строки (столбца), умноженные на одно и то же число.

Решение системы трех линейных уравнений с тремя неизвестными:

$$\begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \\ a_3x + b_3y + c_3z = d_3 \end{cases}$$

находится по формулам Крамера:

$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}; \qquad \Delta_x = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}; \qquad \Delta_y = \begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix};$$

$$\Delta_z = \begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix}$$

$$x = \frac{\Delta_x}{\Delta}$$
; $y = \frac{\Delta_y}{\Delta}$; $z = \frac{\Delta_z}{\Delta}$, если $\Delta \neq 0$.

Если $\Delta = \Delta_x = \Delta_y = \Delta_z = 0$, то система имеет бесконечно много решений. Если $\Delta = 0$, а $\Delta_x \neq 0$ или $\Delta_y \neq 0$, или $\Delta_z \neq 0$, то система не совместна.

Если система однородная, т.е. имеет вид:

$$\begin{cases} a_1x + b_1y + c_1z = 0 \\ a_2x + b_2y + c_2z = 0 \\ a_3x + b_3y + c_3z = 0 \end{cases}$$

и ее определитель отличен от нуля, то она имеет единственное решение: x=y=z=0 .

Если же определитель однородной системы равен нулю, то система сводится либо к двум независимым уравнениям (третье является следствием), либо к одному уравнению (остальные два являются следствиями).

В обоих случаях однородная система имеет бесконечное множество решений.

Примеры:

1) Вычислить определитель третьего порядка:

Разложив определитель по элементам первой строки, получим:

$$\begin{vmatrix} 5 & 3 & 2 \\ -1 & 2 & 4 \\ 7 & 3 & 6 \end{vmatrix} = 5 \cdot \begin{vmatrix} 2 & 4 \\ 3 & 6 \end{vmatrix} - 3 \cdot \begin{vmatrix} -1 & 4 \\ 7 & 6 \end{vmatrix} + 2 \cdot \begin{vmatrix} -1 & 2 \\ 7 & 3 \end{vmatrix} = 5 \cdot (2 \cdot 6 - 3 \cdot 4) - 3 \cdot ((-1) \cdot 6 - 7 \cdot 4) + 2 \cdot ((-1) \cdot 3 - 7 \cdot 2) = 68$$

2) Решить систему уравнений:

$$\begin{cases} x + 2y + z = 8 \\ 3x + 2y + z = 10 \\ 4x + 3y - 2z = 4 \end{cases}$$

Находим определители:

$$\Delta = \begin{vmatrix} 1 & 2 & 1 \\ 3 & 2 & 1 \\ 4 & 3 & -2 \end{vmatrix} = 14; \ \Delta_{x} = \begin{vmatrix} 8 & 2 & 1 \\ 10 & 2 & 1 \\ 4 & 3 & -2 \end{vmatrix} = 14; \ \Delta_{y} = \begin{vmatrix} 1 & 8 & 1 \\ 3 & 10 & 1 \\ 4 & 4 & -2 \end{vmatrix} = 28;$$

$$\Delta_{z} = \begin{vmatrix} 1 & 2 & 8 \\ 3 & 2 & 10 \\ 4 & 3 & 4 \end{vmatrix} = 42$$

Тогда:
$$x = \frac{\Delta_x}{\Delta} = 1$$
; $y = \frac{\Delta_y}{\Delta} = 2$; $z = \frac{\Delta_z}{\Delta} = 3$.

Непосредственной подстановкой найденного решения в каждое из уравнений системы убеждаемся в правильности ответа. Ответ: x=1; y=2; z=3.

3) Решить систему линейных однородных уравнений:

$$\begin{cases} 4x + y + z = 0 \\ x + 3y + z = 0 \\ x + y + 2z = 0 \end{cases}$$

Находим определитель системы:

$$\Delta = \begin{vmatrix} 4 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 2 \end{vmatrix} = 4 \cdot (3 \cdot 2 - 1 \cdot 1) - 1 \cdot (1 \cdot 2 - 1 \cdot 1) + 1 \cdot (1 \cdot 1 - 1 \cdot 3) = 17 \neq 0$$

Так как $\Delta \neq 0$, то система имеет только нулевое решение: x = y = z = 0.

4) Решить систему уравнений:

$$\begin{cases} 3x + 2y - z = 0 \\ x + 2y + 9z = 0 \\ x + y + 2z = 0 \end{cases}$$

Находим определитель системы:

$$\Delta = \begin{vmatrix} 3 & 2 & -1 \\ 1 & 2 & 9 \\ 1 & 1 & 2 \end{vmatrix} = 3 \cdot (2 \cdot 2 - 1 \cdot 9) - 2 \cdot (1 \cdot 2 - 1 \cdot 9) + (-1) \cdot (1 \cdot 1 - 1 \cdot 2) = 0$$

Система имеет решения, отличные от нулевого. Решаем систему первых двух уравнений (третье уравнение является их следствием).

$$\begin{cases} 3x + 2y - z = 0 \\ x + 2y + 9z = 0 \end{cases}$$
$$x = \begin{vmatrix} 2 & -1 \\ 2 & 9 \end{vmatrix} \cdot t = 20t \; ; \; y = -\begin{vmatrix} 3 & -1 \\ 1 & 9 \end{vmatrix} \cdot t = -28t \; ; \; z = \begin{vmatrix} 3 & 2 \\ 1 & 2 \end{vmatrix} \cdot t = 4t$$

Ответ: x=20t, y=-28t, z=4t, где t – любое действительное число.

2. Матрицы. Решение систем уравнений с помощью матриц

Матрицей называют прямоугольную таблицу чисел:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Если m=n, то матрица называется квадратной, а число m, равное n, - ее порядком. В общем же случае матрица называется прямоугольной (с размерами m×n). Числа, составляющие матрицу, называются ее элементами. При двухиндексном обозначении элементов первый индекс указывает номер строки, а второй индекс – номер столбца, на пересечении которых стоит данный элемент.

Квадратная матрица A называется невырожденной (не особой), если ее определитель $\Delta(A) \neq 0$. Если же $\Delta(A) = 0$, то матрица называется вырожденной (особой).

Матрицы
$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 и $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ называются

квадратными матрицами соответственно второго и третьего порядков. Если элементы квадратной матрицы удовлетворяют условию a_{mn} = a_{nm} , то матрица называется симметричной.

Две матрицы:

$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} \end{pmatrix} \mathbf{u} \ \mathbf{B} = \begin{pmatrix} \mathbf{b}_{11} & \mathbf{b}_{12} & \mathbf{b}_{13} \\ \mathbf{b}_{21} & \mathbf{b}_{22} & \mathbf{b}_{23} \\ \mathbf{b}_{31} & \mathbf{b}_{32} & \mathbf{b}_{33} \end{pmatrix}$$

считаются равными (A=B) тогда и только тогда, когда равны их соответствующие элементы, т.е., когда a_{mn} = b_{mn} (n, m = 1, 2, 3).

Суммой матриц А и В называется матрица, определяемая равенством:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \\ a_{31} + b_{31} & a_{32} + b_{32} & a_{33} + b_{33} \end{pmatrix}$$

Произведением числа m на матрицу A называется матрица, определяемая равенством:

$$\mathbf{m} \cdot \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} \mathbf{m} a_{11} & \mathbf{m} a_{12} & \mathbf{m} a_{13} \\ \mathbf{m} a_{21} & \mathbf{m} a_{22} & \mathbf{m} a_{23} \\ \mathbf{m} a_{31} & \mathbf{m} a_{32} & \mathbf{m} a_{33} \end{pmatrix}$$

Произведение двух матриц A и B обозначается как AB и определяется равенством:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^{3} a_{1j}b_{j1} & \sum_{j=1}^{3} a_{1j}b_{j2} & \sum_{j=1}^{3} a_{1j}b_{j3} \\ \sum_{j=1}^{3} a_{2j}b_{j1} & \sum_{j=1}^{3} a_{2j}b_{j2} & \sum_{j=1}^{3} a_{2j}b_{j3} \\ \sum_{j=1}^{3} a_{3j}b_{j1} & \sum_{j=1}^{3} a_{3j}b_{j2} & \sum_{j=1}^{3} a_{3j}b_{j3} \\ \sum_{j=1}^{3} a_{3j}b_{j1} & \sum_{j=1}^{3} a_{3j}b_{j2} & \sum_{j=1}^{3} a_{3j}b_{j3} \end{pmatrix}$$

т.е. элемент матрицы произведения, стоящий в i-ой строке и k-ом столбце, равен сумме произведений соответствующих элементов i-ой строки матрицы A и k-ого столбца матрицы B. В общем случае переместительный закон не выполняется, т.е.:

$$A \cdot B \neq B \cdot A$$

Нулевой матрицей называется матрица, все элементы которой равны нулю:

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0$$

Сумма этой матрицы и любой матрицы А дает матрицу А.

$$A+0=A$$

Единичной матрицей называется матрица:

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

При умножении этой матрицы слева или справа на матрицу А получается матрица А:

$$AE=EA=A$$

Матрица В называется обратной по отношению к матрице A, если произведение AB и BA равны единичной матрице: AB=BA=E. Для матицы, обратной по отношению к матрице A, принято обозначение: A-1. Таким образом:

$$AA^{-1} = A^{-1}A = E$$

Всякая невырожденная квадратная матрица А имеет обратную матрицу. Обратная матрица находится по формуле:

$$A^{-1} = \begin{pmatrix} A_{11}/\Delta(A) & A_{21}/\Delta(A) & A_{31}/\Delta(A) \\ A_{12}/\Delta(A) & A_{22}/\Delta(A) & A_{32}/\Delta(A) \\ A_{13}/\Delta(A) & A_{23}/\Delta(A) & A_{33}/\Delta(A) \end{pmatrix},$$

где A_{mn} – алгебраическое дополнение элементов определителя матрицы, т.е. произведение минора второго порядка, полученного вычеркиванием m-ой строки и n-ого столбца в определителе матрицы A, на $(-1)^{m+n}$.

Матрицей столбцом называется матрица:

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{pmatrix}$$

Произведение AX определяется равенством:

$$AX = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 \end{pmatrix}$$

Система уравнений:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases}$$

может быть записана в виде матричного уравнения:

$$A \cdot X = B$$
,

где
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \ X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \ B = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}.$$

Решение последнего уравнения, а, следовательно, и исходной системы имеет вид:

$$X = A^{-1} \cdot B \left(\Delta(A) \neq 0 \right)$$

Характеристическим уравнением матрицы $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$

называется уравнение вида:

$$\begin{vmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{vmatrix} = 0$$

Корни этого уравнения λ_1 , λ_2 , λ_3 называются характеристическими числами матрицы. Они всегда действительны, если исходная матрица является симметричной.

Система уравнений:

$$\begin{cases} (a_{11} - \lambda)\xi_1 + a_{12}\xi_2 + a_{13}\xi_3 = 0 \\ a_{21}\xi_1 + (a_{22} - \lambda)\xi_2 + a_{23}\xi_3 = 0 \\ a_{31}\xi_1 + a_{32}\xi_2 + (a_{33} - \lambda)\xi_3 = 0 \end{cases}$$

в которой λ принимает одной из значений λ_1 , λ_2 , λ_3 и определитель которой в силу этого равен 0, определяет тройку чисел (ξ_1,ξ_2,ξ_3) соответствующую данному характеристическому числу. Эта совокупность чисел (ξ_1,ξ_2,ξ_3) с точностью до постоянного множителя определяет ненулевой вектор $\vec{r}=\xi_1\vec{i}+\xi_2\vec{j}+\xi_3\vec{k}$ называемый собственным вектором.

Примеры решения задач

1) Найти произведение матриц АВ и ВА.

$$A = \begin{pmatrix} 1 & 3 & 1 \\ 2 & 0 & 4 \\ 1 & 2 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 1 & 0 \\ 1 & -1 & 2 \\ 3 & 2 & 1 \end{pmatrix}$$

$$A \cdot B = \begin{pmatrix} 1 \cdot 2 + 3 \cdot 1 + 1 \cdot 3 & 1 \cdot 1 + 3 \cdot (-1) + 1 \cdot 2 & 1 \cdot 0 + 3 \cdot 2 + 1 \cdot 1 \\ 2 \cdot 2 + 0 \cdot 1 + 4 \cdot 3 & 2 \cdot 1 + 0 \cdot (-1) + 4 \cdot 2 & 2 \cdot 0 + 0 \cdot 2 + 4 \cdot 1 \\ 1 \cdot 2 + 2 \cdot 1 + 3 \cdot 3 & 1 \cdot 1 + 2 \cdot (-1) + 3 \cdot 2 & 1 \cdot 0 + 2 \cdot 2 + 3 \cdot 1 \end{pmatrix} = \begin{pmatrix} 8 & 0 & 7 \\ 16 & 10 & 4 \\ 13 & 5 & 7 \end{pmatrix}$$

$$B \cdot A = \begin{pmatrix} 2 \cdot 1 + 1 \cdot 2 + 0 \cdot 1 & 2 \cdot 3 + 1 \cdot 0 + 0 \cdot 2 & 2 \cdot 1 + 1 \cdot 4 + 0 \cdot 3 \\ 1 \cdot 1 + (-1) \cdot 2 + 2 \cdot 1 & 1 \cdot 3 + (-1) \cdot 0 + 2 \cdot 2 & 1 \cdot 1 + (-1) \cdot 4 + 2 \cdot 3 \\ 3 \cdot 1 + 2 \cdot 2 + 1 \cdot 1 & 3 \cdot 3 + 2 \cdot 0 + 1 \cdot 2 & 3 \cdot 1 + 2 \cdot 4 + 1 \cdot 3 \end{pmatrix} = \begin{pmatrix} 4 & 6 & 6 \\ 1 & 7 & 3 \\ 8 & 11 & 14 \end{pmatrix}$$

2) Дана матрица
$$A = \begin{pmatrix} 3 & 2 & 2 \\ 1 & 3 & 1 \\ 5 & 3 & 4 \end{pmatrix}$$
. Найти обратную матрицу.

Вычисляем определитель матрицы А:

$$\Delta(A) = \begin{vmatrix} 3 & 2 & 2 \\ 1 & 3 & 1 \\ 5 & 3 & 4 \end{vmatrix} = 3 \cdot \begin{vmatrix} 3 & 1 \\ 3 & 4 \end{vmatrix} - 2 \cdot \begin{vmatrix} 1 & 1 \\ 5 & 4 \end{vmatrix} + 2 \cdot \begin{vmatrix} 1 & 3 \\ 5 & 3 \end{vmatrix} = 27 + 2 - 24 = 5$$

Находим алгебраические дополнения элементов определителя.

$$A_{11} = \begin{vmatrix} 3 & 1 \\ 3 & 4 \end{vmatrix} = 9;$$
 $A_{21} = -\begin{vmatrix} 2 & 2 \\ 3 & 4 \end{vmatrix} = -2;$ $A_{31} = \begin{vmatrix} 2 & 2 \\ 3 & 1 \end{vmatrix} = -4;$

$$A_{12} = -\begin{vmatrix} 1 & 1 \\ 5 & 4 \end{vmatrix} = 1; \qquad A_{22} = \begin{vmatrix} 3 & 2 \\ 5 & 4 \end{vmatrix} = 2;$$

$$A_{32} = -\begin{vmatrix} 3 & 2 \\ 1 & 1 \end{vmatrix} = -1;$$

$$A_{13} = \begin{vmatrix} 1 & 3 \\ 5 & 3 \end{vmatrix} = -12; \qquad A_{23} = -\begin{vmatrix} 3 & 2 \\ 5 & 3 \end{vmatrix} = 1; \qquad A_{33} = \begin{vmatrix} 3 & 2 \\ 1 & 3 \end{vmatrix} = 7.$$
 Следовательно: $A^{-1} = \begin{pmatrix} 9/5 & -2/5 & -4/5 \\ 1/5 & 2/5 & -1/5 \\ -12/5 & 1/5 & 7/5 \end{pmatrix}.$

3) Решить систему уравнений, представив ее в виде матричного уравнения.

$$\begin{cases} 2x + 3y + 2z = 9 \\ x + 2y - 3z = 14 \\ 3x + 4y + z = 16 \end{cases}$$

Перепишем систему в виде: $A \cdot X = B$, где:

$$A = \begin{pmatrix} 2 & 3 & 2 \\ 1 & 2 & -3 \\ 3 & 4 & 1 \end{pmatrix}; \ X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}; \ B = \begin{pmatrix} 9 \\ 14 \\ 16 \end{pmatrix}.$$

Решение матричного уравнения имеет вид:

$$X = A^{-1} \cdot B$$

Найдем А-1. Имеем:

$$\Delta(A) = \begin{vmatrix} 2 & 3 & 2 \\ 1 & 2 & -3 \\ 3 & 4 & 1 \end{vmatrix} = 2 \cdot \begin{vmatrix} 2 & -3 \\ 4 & 1 \end{vmatrix} - 3 \cdot \begin{vmatrix} 1 & -3 \\ 3 & 1 \end{vmatrix} + 2 \cdot \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 28 - 30 - 4 = -6$$

Вычислим алгебраические дополнения этого определителя:

$$A_{11} = \begin{vmatrix} 2 & -3 \\ 4 & -1 \end{vmatrix} = 14; A_{21} = -\begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix} = 5; A_{31} = \begin{vmatrix} 3 & 2 \\ 2 & -3 \end{vmatrix} = -13;$$

$$A_{12} = -\begin{vmatrix} 1 & -3 \\ 3 & 1 \end{vmatrix} = -10; A_{22} = \begin{vmatrix} 2 & 2 \\ 3 & 1 \end{vmatrix} = -4;$$

$$A_{32} = -\begin{vmatrix} 2 & 2 \\ 1 & -3 \end{vmatrix} = 8;$$

$$A_{13} = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = -2; A_{23} = -\begin{vmatrix} 2 & 3 \\ 3 & 4 \end{vmatrix} = 1; A_{33} = \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = 1.$$

$$A^{-1} = -\frac{1}{6} \cdot \begin{pmatrix} 14 & 5 & -13 \\ -10 & -4 & 8 \\ -2 & 1 & 1 \end{pmatrix}$$

Откуда:

$$X = -\frac{1}{6} \cdot \begin{pmatrix} 14 & 5 & -13 \\ -10 & -4 & 8 \\ -2 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 9 \\ 14 \\ 16 \end{pmatrix} = -\frac{1}{6} \cdot \begin{pmatrix} 14 \cdot 9 + 5 \cdot 14 + (-13) \cdot 16 \\ (-10) \cdot 9 + (-4) \cdot 14 + 8 \cdot 16 \\ (-2) \cdot 9 + 1 \cdot 14 + 1 \cdot 16 \end{pmatrix} =$$

$$= -\frac{1}{6} \cdot \begin{pmatrix} -12 \\ -18 \\ 12 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ -2 \end{pmatrix}$$

Следовательно: x=2, y=3, z=-2.

4) Дана матрица $\begin{pmatrix} 5 & 2 \\ 4 & 3 \end{pmatrix}$. Найти ее характеристические числа и собственные векторы.

Составляем характеристическое уравнение:

$$\begin{vmatrix} 5 - \lambda & 2 \\ 4 & 3 - \lambda \end{vmatrix} = 0$$

$$(5 - \lambda)(3 - \lambda) - 8 = 0$$
или
$$\lambda^2 - 8\lambda + 7 = 0$$

Характеристические числа: $\lambda_1 = 1$ и $\lambda_2 = 7$.

Собственный вектор, соответствующий первому характеристическому числу, находим из системы уравнений:

$$\begin{cases} (5 - \lambda_1)y_1 + 2y_2 = 0 \\ 4y_1 + (3 - \lambda_1)y_2 = 0 \end{cases}$$

Так как $\lambda_1 = 1$, то y_1 и y_2 связаны зависимостью $2y_1 + y_2 = 0$. Полагая $y_1 = \alpha$ ($\alpha \neq 0$ - произвольное число), получаем $y_2 = -2\alpha$ и собственный вектор, соответствующий характеристическому числу $\lambda_1 = 1$, есть $\vec{r}_1 = \alpha \vec{i} - 2\alpha \vec{j}$.

Найдем второй собственный вектор. Имеем:

$$\begin{cases} (5 - \lambda_2)y_1' + 2y_2' = 0 \\ 4y_1' + (3 - \lambda_2)y_2' = 0 \end{cases}$$

Подставив значение λ_2 =7, приходим к соотношению $y_1' - y_2' = 0$, т.е. $y_1' = y_2' = \beta \neq 0$. Собственный вектор, соответствующий второму характеристическому числу имеет вид: $\vec{r}_2 = \beta \vec{i} + \beta \vec{j}$.

3. Решение системы уравнений методом Гаусса

Численное решение линейных алгебраических уравнений с помощью определителей удобно производить для системы из 2 или 3 уравнений. В случае систем большего числа уравнений удобнее пользоваться методом Гаусса, который заключается в последовательном исключении неизвестных. Поясним смысл этого метода на системе четырех уравнений с четырьмя неизвестными.

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z + a_{14}t = a_{15} & (a) \\ a_{21}x + a_{22}y + a_{23}z + a_{24}t = a_{25} & (6) \\ a_{31}x + a_{32}y + a_{33}z + a_{34}t = a_{35} & (B) \\ a_{41}x + a_{42}y + a_{43}z + a_{44}t = a_{45} & (\Gamma) \end{cases}$$

Допустим, что $a_{11} \neq 0$ (если $a_{11} = 0$, то изменим порядок уравнений, выбрав первым такое уравнение, в котором коэффициент при х не равен нулю.

1 шаг: делим уравнение (а) на (a_{11}) , умножаем полученное уравнение на a_{21} и вычитаем из (б), затем умножаем на a_{31} и вычитаем из (в), наконец, умножаем на a_{41} и вычитаем из (г). В результате приходим к системе:

$$\begin{cases} x + b_{12}y + b_{13}z + b_{14}t = b_{15} & (\pi) \\ b_{22}y + b_{23}z + b_{24}t = b_{25} & (e) \\ b_{32}y + b_{33}z + b_{34}t = b_{35} & (\pi) \\ b_{42}y + b_{43}z + b_{44}t = b_{45} & (3) \end{cases}$$

причем b_{ij} получаются из a_{ij} по следующим формулам:

$$b_{ij} = a_{ij} - \frac{a_{1j}}{a_{11}} a_{i1}$$
 (i=2, 3, 4; j=2, 3, 4)

2 шаг: поступаем с уравнениями (e), (ж) и (3) точно также, как с уравнениями (a), (б), (в), (г) и т.д. В результате этого получим систему:

$$\begin{cases} x + b_{12}y + b_{13}z + b_{14}t = b_{15} \\ y + c_{23}z + c_{24}t = c_{25} \\ z + d_{34}t = d_{35} \\ t = e_{45} \end{cases}$$

Из преобразованной системы все неизвестные определяются последовательно без труда.

Пример:

Решить систему уравнений методом Гаусса:

$$\begin{cases} x_1 + x_2 + 2x_3 = -1 \\ 2x_1 - x_2 + 2x_3 = -4 \\ 4x_1 - x_2 + 4x_3 = -2 \end{cases}$$

$$\begin{pmatrix} 1 & 1 & 2 & -1 \\ 2 & -1 & 2 & -4 \\ 4 & -1 & 4 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & -3 & -2 & -2 \\ 0 & -3 & -4 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & -3 & -2 & -2 \\ 0 & 0 & 6 & -12 \end{pmatrix}$$

Из последней строки находим x_3 =-2. Зная x_3 , из второй строки находим x_2 =2. Наконец, зная x_2 и x_3 , из первой строки находим x_1 =1.

ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ

1. Скалярное произведение

Определение. Скалярным произведением двух векторов \vec{a} и \vec{b} называется число, равное произведению длин этих векторов на косинус угла ϕ между ними: $\vec{a}\vec{b} = |\vec{a}||\vec{b}|\cos\phi$.

Свойства скалярного произведения.

1.
$$\vec{a} \cdot \vec{a} = |\vec{a}| |\vec{a}| = \vec{a}^2$$
 или $|\vec{a}|^2 = \vec{a}^2$.

$$2.\ \vec{a}\vec{b}=0$$
, если $\left|\vec{a}\right|=0$, или $\left|\vec{b}\right|=0$, или $\vec{a}\perp\vec{b}$.

3.
$$\vec{a}\vec{b} = \vec{b}\vec{a}$$
.

4.
$$(\vec{a} + \vec{b})\vec{c} = \vec{a}\vec{c} + \vec{b}\vec{c}$$
.

5.
$$(\lambda \vec{a})\vec{b} = \vec{a}(\lambda \vec{b}) = \lambda(\vec{a}\vec{b})$$
.

Скалярные произведения ортов осей координат $\vec{i}^2 = \vec{j}^2 = \vec{k}^2 = 1$, $\vec{i}\vec{j} = \vec{i}\vec{k} = \vec{j}\vec{k} = 0$.

Если
$$\vec{a}=x_1\vec{i}+y_1\vec{j}+z_1\vec{k}$$
, a $\vec{b}=x_2\vec{i}+y_2\vec{j}+z_2\vec{k}$, то $\vec{a}\vec{b}=x_1x_2+y_1y_2+z_1z_2$.

Длина вектора $|\vec{a}| = \sqrt{x^2 + y^2 + z^2}$.

Косинус угла между векторами
$$\vec{a} = \{x_1, y_1, z_1\}$$
 и $\vec{b} = \{x_2, y_2, z_2\}$ вычисляется по формуле
$$\cos \varphi = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \sqrt{x_2^2 + y_2^2 + z_2^2}} \,.$$

2. Векторное произведение

Определение. Векторным произведением вектора \vec{a} на вектор \vec{b} называется третий вектор $\vec{c} = \vec{a} \times \vec{b}$, определяемый следующим образом:

- 1) модуль вектора \vec{c} равен площади параллелограмма, построенного на векторах \vec{a} и \vec{b} , т.е. $|\vec{c}|=|\vec{a}||\vec{b}|\sin \varphi$.
 - 2) $\vec{c} \perp \vec{a}$, $\vec{c} \perp \vec{b}$.
- 3) векторы $\vec{a}, \vec{b}, \vec{c}$ после приведения к общему началу образуют правую тройку векторов.

Свойства векторного произведения.

1.
$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$
.

$$2.\ \vec{a} imes \vec{b} = \vec{0}$$
 , если $|\vec{a}| = 0$, или $|\vec{b}| = 0$, или $|\vec{a}| = 0$.

3.
$$(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$$
.

4.
$$(\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b}) = \lambda (\vec{a} \times \vec{b}).$$

5.
$$\vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = \vec{0}$$
, $\vec{i} \times \vec{j} = -\vec{j} \times \vec{i} = \vec{k}$, $\vec{j} \times \vec{k} = -\vec{k} \times \vec{j} = \vec{i}$, $\vec{k} \times \vec{i} = -\vec{i} \times \vec{k} = \vec{j}$.

6. Если
$$\vec{a} = \{x_1, y_1, z_1\}$$
 и $\vec{b} = \{x_2, y_2, z_2\}$, то $\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$.

3. Смешанное произведение

Определение. Смешанным произведением векторов \vec{a} , \vec{b} и \vec{c} называется число $\vec{a}\vec{b}\vec{c}=\left(\vec{a}\times\vec{b}\right)\!\vec{c}$, абсолютная величина которого равна объёму параллелепипеда, построенного на этих векторах.

Свойства смешанного произведения.

- 1. Смешанное произведение трёх векторов равно нулю, если выполнено хотя бы одно из трёх условий:
- a) хотя бы один из перемножаемых векторов является нулевым;
- б) два из перемножаемых векторов имеют параллельные направления коллинеарны;
- в) три ненулевых вектора параллельны одной и той же плоскости (компланарность).
- 2. При перестановке местами любых два сомножителя произведение изменяет знак.

3. Если
$$\vec{a}=\{x_1,y_1,z_1\},\ \vec{b}=\{x_2,y_2,z_2\}$$
 и $\vec{c}=\{x_3,y_3,z_3\},$ то

$$\vec{a}\vec{b}\vec{c} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}.$$

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ

1. Координаты на прямой. Деление отрезка в данном отношении.

Расстояние d между точками $M_1(x_1)$ и $M_2(x_2)$ числовой оси при любом расположении точек на этой оси определяется формулой: $d=|x_2-x_1|$.

Если точки A и B лежат на числовой оси Ox, то координата точки $C(\overline{x})$, делящей отрезок между точками $A(x_1)$ и $B(x_2)$ в отношении $\lambda = \frac{|AC|}{|CB|}$ определяется по формуле: $\overline{x} = \frac{x_1 + \lambda \cdot x_2}{1 + \lambda}$.

2. Прямоугольные координаты на плоскости. Простейшие залачи.

Расстояние d между точками $M_1(x_1,y_1)$ и $M_2(x_2,y_2)$ числовой оси при любом расположении точек на этой оси определяется формулой: $d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$.

Координаты точки $C(\overline{x},\overline{y})$, делящей отрезок между точками $A(x_1,y_1)$ и $B(x_2,y_2)$ в отношении $\lambda=\frac{|AC|}{|CB|}$

определяются по формуле: $\bar{x} = \frac{x_1 + \lambda \cdot x_2}{1 + \lambda}$, $\bar{y} = \frac{y_1 + \lambda \cdot y_2}{1 + \lambda}$.

В частности, если $\lambda=1$, получаются формулы для координат середины отрезка: $\overline{x}=\frac{x_1+x_2}{2}$, $\overline{y}=\frac{y_1+y_2}{2}$.

Площадь треугольника с вершинами $A(x_1, y_1)$, $B(x_2, y_2)$ и $C(x_3, y_3)$ определяется по формуле: $S = \frac{1}{2} \big| x_1 \big(y_2 - y_3 \big) + x_2 \big(y_3 - y_1 \big) + x_3 \big(y_1 - y_2 \big) \big|.$

Задача 1. Треугольник задан на плоскости вершинами: A(3;-6), B(-2;-6) и C(6;6). Найти длины медианы, высоты, биссектрисы из вершины В. Найти косинус угла В.

Решение. Найдём середину M стороны AC, расположенной напротив вершины B. Так как

$$\lambda = |AM| : |MC| = 1$$
, то $x_M = \frac{x_A + x_C}{2} = \frac{3+6}{2} = 4,5$, $y_M = \frac{y_A + y_C}{2} = \frac{-6+6}{2} = 0$. Тогда для $M(4,5;0)$ и $B(-2;-6)$ получим $|BM| = \sqrt{(4.5+2)^2 + (0+6)^2} = 8.84$ ед.

Найдём площадь треугольника АВС.

$$S = \frac{1}{2} |3(-6-6)-2(6+6)+6(-6+6)| = 30 \text{ кв ед.}$$

Найдём сторону $AC = \sqrt{(6-3)^2 + (6+6)^2} = \sqrt{153}$ ед.

Площадь треугольника АВС можно найти по формуле

$$S = \frac{1}{2} |AC| h_C$$
. Тогда $h_C = \frac{2S}{|AC|} = \frac{2 \cdot 30}{\sqrt{153}} = 4,85$ ед.

Для биссектрисы нахождения ДЛИНЫ данного угла треугольника воспользуемся тем, что она делит противоположную сторону треугольника на части пропорциональные сторонам треугольника, образующим если угол, т.е. в нашем случае, K - точка пересечения

биссектрисы угла B со стороной AC, то $\frac{\left|BA\right|}{\left|BC\right|} = \frac{\left|AK\right|}{\left|CK\right|} = \lambda$.

Находим
$$|BA| = \sqrt{(3+2)^2 + (-6+6)^2} = 5$$

$$|BC| = \sqrt{(6+2)^2 + (6+6)^2} = \sqrt{208}$$
. Далее, $\lambda = \frac{5}{\sqrt{208}} \approx 0.35$.

Поэтому
$$x_K = \frac{x_A + \lambda x_C}{1 + \lambda} = \frac{3 + 0.35 \cdot 6}{1.35} \approx 3.77,$$

$$y_K = \frac{y_A + \lambda y_C}{1 + \lambda} = \frac{-6 + 0.35 \cdot 6}{1.35} \approx -2.91.$$

Итак, B(-2;-6) и K(3,77;-2,91), т.е.

$$|BK| = \sqrt{(3,77+2)^2 + (-2,91+6)^2} \approx 6,55$$
 ед.

Для нахождения косинуса угла \overrightarrow{B} найдём координаты векторов, выходящих из вершины B. $\overrightarrow{BA} = \{3+2;-6+6\} = \{5;0\},$ $\overrightarrow{BC} = \{6+2;6+6\} = \{8;12\}.$

$$\cos B = \frac{\overrightarrow{BA} \cdot \overrightarrow{BC}}{|BA||BC|} = \frac{5 \cdot 8 + 0 \cdot 12}{5 \cdot \sqrt{208}} = \frac{8}{\sqrt{208}} \approx 0,55.$$

Ответ: медиана $m_B \approx 8{,}94$, высота $h_B \approx 4{,}85$, биссектриса $b_B \approx 6{,}55$, $\cos B \approx 0{,}55$.

3. Прямая на плоскости

Ax + By + C = 0, причём $A^2 + B^2 \neq 0$, - общее уравнение прямой, где A, B, C - постоянные коэффициенты.

y=kx+b - уравнение прямой с угловым коэффициентом, где $k=-\frac{A}{B},\; b=-\frac{C}{B}$ при $B\neq 0$.

 $\frac{x}{a} + \frac{y}{b} = 1$ - уравнение прямой в отрезках.

 $tg\, lpha = \left| rac{k_2 - k_1}{1 + k_1 k_2}
ight|$ - острый угол между двумя прямыми

 $y = k_1 x + b_1$ и $y = k_2 x + b_2$.

 $k_1 = k_2$ - условие параллельности прямых.

 $k_{1}k_{2}=-1$ - условие перпендикулярности прямых.

 $y-y_1=k\big(x-x_1\big)$ - уравнение прямой с угловым коэффициентом k , проходящей через точку $M\big(x_1,y_1\big)$.

 $\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1} \text{ - уравнение прямой, проходящей через две}$ различные точки $M_1\big(x_1,y_1\big)$ и $M_2\big(x_2,y_2\big).$

 $\frac{y-y_1}{a_y} = \frac{x-x_1}{a_x} \quad \text{- уравнение прямой, проходящей через}$ точку $M_1(x_1,y_1)$ параллельно ненулевому вектору $\vec{a} = \{a_x;a_y\}.$

Пример типовой задачи. Даны вершины треугольника ABC: A(4;3), B(-3;-3), C(2;7). Найти: а) уравнение стороны AB; б) уравнение высоты CH; в) уравнение медианы AM; в) точку N пересечения медианы AM и высоты CH; д) уравнение прямой, проходящей через вершину C параллельно стороне AB.

Решение. а) Напишем уравнение стороны AB: $\frac{y-y_A}{y_B-y_A} = \frac{x-x_A}{x_B-x_A}, \text{ или } \frac{y-3}{-3-3} = \frac{x-4}{-3-4}, \text{ откуда } \frac{y-3}{-6} = \frac{x-4}{-7}, \text{ или } 6(x-4) = 7(y-3), \text{ или } y = \frac{6}{7}x - \frac{3}{7}.$

- б) Используем условие перпендикулярности высоты CH , выходящей из точки $C(x_0,y_0)=C(2;7)$ на сторону AB . Так как $k_{AB}=\frac{6}{7}$, то из $k_{AB}k_{CH}=-1$ следует, что $k_{CH}=-\frac{7}{6}$. Из формулы $y-y_0=k\big(x-x_0\big)$ получим $y-7=-\frac{7}{6}(x-2)$, или 7x+6y-56=0 .
- в) По известным формулам находим координаты середины M отрезка BC: x = (-3+2)/2 = -1/2, y = (-3+7)/2 = 2. По двум известным точкам A и M составляем уравнение медианы AM: $\frac{x-4}{-1/2-4} = \frac{y-3}{2-3}$ или 2x-9y+19=0.
- г) Для нахождения координат точки N пересечения AM и CH составляем систему уравнений $\begin{cases} 7x+6y-56=0\\ 2x-9y+19=0 \end{cases}$. Решая её, получаем N(26/5;49/15).
- д) Так как прямая, проходящая через вершину C параллельна стороне AB, то их угловые коэффициенты равны

 $k=k_{AB}=rac{6}{7}$. Из формулы получим $y-y_0=k(x-x_0)$ для точки $C(x_0,y_0)=C(2;7)$ получаем $y-7=rac{6}{7}(x-2)$, или 6x-7y+37=0.

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ

1. Плоскость

- 1) Общее уравнение плоскости Ax + By + Cz + D = 0, если $A^2 + B^2 + C^2 \neq 0$.
 - 2) Уравнение плоскости в отрезках $\frac{x}{a} + \frac{y}{b} + \frac{c}{z} = 1$.
- 3) Угол между плоскостями $A_1\,x+B_1\,y+C_1z+D_1=0$ и $A_2x+B_2\,y+C_2z+D_2=0$ определяется по формуле $\cos\varphi=\frac{A_1A_2+B_1B_2+C_1C_2}{\sqrt{A_1^2+B_1^2+C_1^2}\sqrt{A_2^2+B_2^2+C_2^2}}\,.$
 - 4) Условие параллельности плоскостей $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$.
- 5) Условие перпендикулярности плоскостей $A_1A_2+B_1B_2+C_1C_2=0$.
- 6) Уравнение плоскости, проходящей через точку $M_0(x_0,y_0,z_0)$ и перпендикулярной вектору $\vec{n}=A\vec{i}+B\vec{j}+C\vec{k}$ имеет вид $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$.
- 7) Уравнение плоскости, проходящей через три данные точки $M_1(x_1,y_1,z_1),\ M_2(x_2,y_2,z_2),\ M_3(x_3,y_3,z_3)$ определяется по

формуле
$$\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix} = 0$$
.

2. Прямая в пространстве

- 1) Прямая может быть задана как линия пересечения двух плоскостей: $\begin{cases} A_1x+B_1y+C_1z+D_1=0\\ A_2x+B_2y+C_2z+D_2=0 \end{cases}.$
- 3) Уравнение прямой, проходящей через две точки $M_1(x_1,y_1,z_1)$ и $M_2(x_2,y_2,z_2)$ имеет вид: $\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}=\frac{z-z_1}{z_2-z_1}\,.$
- 4) Канонические уравнения $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ определяют прямую, проходящую через точку $M_1(x_1,y_1,z_1)$ и параллельную вектору $\vec{s} = l\vec{i} + m\vec{j} + n\vec{k}$. В частности, эти уравнения могут быть записаны в виде: $\frac{x-x_1}{\cos\alpha} = \frac{y-y_1}{\cos\beta} = \frac{z-z_1}{\cos\gamma}$, где α,β,γ углы, образованные прямой с осями координат; направляющие косинусы прямой находятся по формулам: $\cos\alpha = \frac{l}{\sqrt{l^2+m^2+n^2}}$ и $\cos\beta = \frac{m}{\sqrt{l^2+m^2+n^2}}$ и $\cos\gamma = \frac{n}{\sqrt{l^2+m^2+n^2}}$

5) От канонических уравнений прямой, вводя параметр t, нетрудно перейти к параметрическим уравнениям: $\begin{cases} x = lt + x_1 \\ y = mt + y_1 \\ z = nt + z. \end{cases}$

6) Угол между прямыми, заданными каноническими уравнениями
$$\frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$$
 и $\frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$ определяется по формуле $\cos \varphi = \frac{l_1 l_2 + m_1 m_2 + n_1 n_2}{\sqrt{l_1^2 + m_1^2 + n_1^2} \sqrt{l_2^2 + m_2^2 + n_2^2}}$.

Условие параллельности двух прямых: $\frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}$.

Условие перпендикулярности прямых: $l_1l_2 + m_1m_2 + n_1n_2 = 0$.

8) Угол между прямой $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ и плоскостью Ax + By + Cz + D = 0 определяется как $\sin \varphi = \frac{\left|Al + Bm + Cn\right|}{\sqrt{A^2 + B^2 + C^2}\sqrt{l^2 + m^2 + n^2}}$.

Условие параллельности прямой и плоскости: Al + Bm + Cn = 0 .

Условие перпендикулярности прямой и плоскости: $\frac{A}{l} = \frac{B}{m} = \frac{C}{n} \ .$

Задача 2. Даны координаты вершин пирамиды A_1 (3;1;4), A_2 (-1;6;1), A_3 (-1;1;6), A_4 (0;4;-1). Найти:

- 1) длину ребра A_1A_2 ;
- 2) угол между рёбрами $A_1 A_2$ и $A_1 A_4$;
- 3) угол между ребром A_1A_4 и гранью $A_1A_2A_3$;
- 4) площадь грани $A_1 A_2 A_3$;
- 5) объём пирамиды;
- 5) уравнение прямой A_1A_2 ;
- 7) уравнение плоскости $A_1 A_2 A_3$;

8) уравнение высоты, опущенной из вершины A_4 на грань $A_1\,A_2\,A_3$;

Решение.

1) Длину ребра A_1A_2 найдем по формуле $|A_1A_2| = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2} \ .$ $|A_1A_2| = \sqrt{(-1-3)^2+(6-1)^2+(1-4)^2} = \sqrt{16+25+9} = \sqrt{50} = 5\sqrt{2}$

.

2) Угол между рёбрами A_1A_2 и A_1A_4 найдём по формуле $\cos\varphi = \frac{l_1l_2+m_1m_2+n_1n_2}{\sqrt{l_1^2+m_1^2+n_1^2}\sqrt{l_2^2+m_2^2+n_2^2}} \ .$

Напишем уравнения сторон A_1A_2 и A_1A_4 по формуле $\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}=\frac{z-z_1}{z_2-z_1}\,.$ Для прямой $A_1A_2:\frac{x-3}{-1-3}=\frac{y-1}{6-1}=\frac{z-4}{1-4}$ или $\frac{x-3}{-4}=\frac{y-1}{5}=\frac{z-4}{-3}\,,$ т.е. $l_1=-4\,,$ $m_1=5\,,$ $n_1=-3\,.$

Для A_1A_4 : $\frac{x-3}{0-3} = \frac{y-1}{4-1} = \frac{z-4}{-1-4}$ или $\frac{x-3}{-3} = \frac{y-1}{3} = \frac{z-4}{-5}$, т.е. $l_2 = -3$, $m_2 = 3$, $n_2 = -5$.

Подставим в формулу для вычисления $\cos \varphi \frac{(-4)(-3)+5\cdot 3+(-3)(-5)}{\sqrt{16+25+9}\sqrt{9+9+25}} = \frac{12+18+15}{\sqrt{50}\sqrt{43}} = \frac{42}{5\sqrt{86}} \approx 0,9058$. $\varphi \approx 25^{\circ}5'$.

3) Угол между ребром A_1A_4 и гранью $A_1A_2A_3$ найдём по ϕ формуле $\sin \varphi = \frac{\left|Al+Bm+Cn\right|}{\sqrt{A^2+B^2+C^2}\sqrt{l^2+m^2+n^2}}$.

Уравнение A_1A_4 составлено в предыдущем пункте, оно имеет вид $\frac{x-3}{-3}=\frac{y-1}{3}=\frac{z-4}{-5}$, откуда следует, что l=-3, m=3, n=-5.

Напишем уравнение плоскости $A_1 A_2 A_3$, проходящей через

три точки:
$$\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix} = 0, \begin{vmatrix} x-3 & y-1 & z-4 \\ -1-3 & 6-1 & 1-4 \\ -1-3 & 1-1 & 6-4 \end{vmatrix} = 0,$$

$$\begin{vmatrix} x-3 & y-1 & z-4 \\ -4 & 5 & -3 \\ -4 & 0 & 2 \end{vmatrix} = 0, 10(x-3)-(y-1)(-20)+(z-4)20=0,$$

$$10x - 30 + 20y - 20 + 20z - 80 = 0$$
, $10x + 20y + 20z - 130 = 0$, $x + 2y + 2z - 13 = 0$, откуда следует, что $A = 1$, $B = 2$, $C = 2$.

Подставим в формулу для $\sin \varphi$ и получим $\sin \varphi = \frac{\left|1(-3) + 2 \cdot 3 + 2(-5)\right|}{\sqrt{9 + 9 + 25}\sqrt{1 + 4 + 4}} = 0,3559$, $\varphi = 20^{\circ}51'$.

4) Для того, чтобы найти площадь грани $A_1\,A_2A_3$ найдём координаты векторов $A_1\vec{A}_2$ и $A_1\vec{A}_3$.

$$A_1 \vec{A}_2 (-1-3;6-1;1-4) = (-4;5;-3),$$

 $A_1 \vec{A}_3 (-1-3;1-1;6-4) = (-4;0;2).$

$$A_{1}\vec{A}_{2} \times A_{1}\vec{A}_{3} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -4 & 5 & -3 \\ -4 & 0 & 2 \end{vmatrix} = 10\vec{i} + 20\vec{j} + 20\vec{k} .$$

$$S_{\Delta ABC} = \frac{1}{2} |A_1 \vec{A}_2 \times A_1 \vec{A}_3| = \frac{1}{2} \sqrt{100 + 400 + 400} = \frac{30}{2} = 15$$
 кв.ед.

5) Объём пирамиды
$$A_1 A_2 A_3 A_4$$
 равен $\frac{1}{6} \left| A_1 \vec{A}_2 \cdot A_1 \vec{A}_3 \cdot A_1 \vec{A}_4 \right|$.

$$A_1 \vec{A}_2 \cdot A_1 \vec{A}_3 \cdot A_1 \vec{A}_4 = \begin{vmatrix} -4 & 5 & -3 \\ -4 & 0 & 2 \\ -5 & 3 & -5 \end{vmatrix} = -70, \ V_{nup} = \frac{70}{6} = \frac{35}{3}$$
 куб. ед.

- 6) Уравнение прямой A_1A_2 уже написано в п. 2) $\frac{x-3}{-4} = \frac{y-1}{5} = \frac{z-4}{-3} \, .$
- 7) Уравнение плоскости $A_1 A_2 A_3$ написано в п. 3) x + 2y + 2z 13 = 0 .
- 8) Уравнение высоты, опущенной из вершины A_4 на плоскость x+2y+2z-13=0, напишем в виде $\frac{x-x_4}{l}=\frac{y-y_4}{m}=\frac{z-z_4}{n}$, где $\vec{n}(l;m;n)=\vec{n}(1;2;2)$ нормальный вектор плоскости x+2y+2z-13=0. Тогда уравнение высоты имеет вид $\frac{x}{l}=\frac{y-4}{2}=\frac{z+1}{2}$.

Ответ: 1)
$$|A_1 A_2| = 5\sqrt{2}$$
; 2) $\angle A_2 A_1 A_4 = 25^0 5'$; 3) $\left(A_1 A_4, \hat{A}_1 A_2 A_3\right) = 20^0 51'$; 4) $S_{\Delta A_1 A_2 A_3} = 15$ кв. ед.; 5) $V_{nup} = \frac{35}{3}$

куб. ед.; 6) уравнение прямой A_1A_2 $\frac{x-3}{-4} = \frac{y-1}{5} = \frac{z-4}{-3}$; 7) уравнение плоскости $A_1A_2A_3$ x+2y+2z-13=0; 8) уравнение высоты $\frac{x}{1} = \frac{y-4}{2} = \frac{z+1}{2}$.

комплексные числа

1. Алгебраическая форма комплексных чисел

Комплексным числом z называется выражение z = x + iy где x и y – действительные числа, i – мнимая единица,

определяемая условием: $i^2 = -1$. Число x называется действительной частью комплексного числа z и обозначается: x = Rez, число у называется мнимой частью z и обозначается: y = Imz. Запись z = x + iy называется алгебраической формой комплексного числа.

Два комплексных числа: $z_1 = x_1 + iy_1$ и $z_2 = x_2 + iy_2$ называются равными, если равны их действительные части и мнимые части: $x_1 = x_2$, $y_1 = y_2$.

Два комплексных числа называются сопряженными, если они отличаются только знаком перед мнимой частью: z = x + iy и z = x - iy

Сложение и вычитание комплексных чисел выполняется по формулам:

$$z_1 \pm z_2 = (x_1 + iy_1) \pm (x_2 + iy_2) = (x_1 \pm x_2) + i(y_1 \pm y_2)$$

Умножение комплексных чисел:

$$z_1 \cdot z_2 = (x_1 + iy_1)(x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$$
, где: $i^2 = -1$.

Деление комплексных чисел производится по формуле:

$$\frac{z_1}{z_2} = \frac{z_1 \cdot \bar{z_2}}{z_2 \cdot \bar{z_2}} = \frac{(x_1 + iy_1)(x_2 - iy_2)}{x_2^2 + y_2^2} = \frac{(x_1x_2 + y_1y_2) + (x_2y_1 - x_1y_2)}{x_2^2 + y_2^2}.$$

Задача 1. Даны два комплексных числа $z_1 = 10 - i$ и $z_2 = -5 + 2i$;

Найти: а) разность
$$z_2 - z_1$$
; б) частное $\frac{z_1}{z_2}$

Решение:

a)
$$z_2 - z_1 = (-5 + 2i) - (10 - i) = -5 + 2i - 10 + i =$$

= $(-5 - 10) + (2i + i) = -15 + 3i$

6)
$$\frac{z_1}{z_2} = \frac{(10-i)}{(-5+2i)} = \frac{(10-i)\cdot(-5-2i)}{(-5+2i)\cdot(-5-2i)} = \frac{-50-20i+5i+2i^2}{((-5)^2-(-2i)^2)} = \frac{(-50-2)+(-20i+5i)}{25-4i^2} = \frac{-52-15i}{29} = \frac{-52}{29} - \frac{15i}{29}$$

Залача 2.

Решить систему уравнений: $\begin{cases} (-1-4i) \cdot z_1 + (5-4i) \cdot z_2 = -9 + 10i \\ (-6-6i) \cdot z_1 + (2-8i) \cdot z_2 = 12 + 18i \end{cases}$

Решение:

$$\begin{split} &\Delta = \begin{vmatrix} -1 - 4i & 5 - 4i \\ -6 - 6i & 2 - 8i \end{vmatrix} = (-1 - 4i) \cdot (2 - 8i) + (6 + 6i) \cdot (5 - 4i) = \\ &= -2 + 8i - 8i - 32 + 30 - 24i + 30i - 24i + 30i + 24 = 20 + 6i \\ &\Delta_1 = \begin{vmatrix} -9 + 10i & 5 - 4i \\ 12 + 8i & 2 - 8i \end{vmatrix} = (-9 + 10i) \cdot (2 - 8i) - (5 - 4i) \cdot (12 + 8i) = \\ &= -18 + 72i + 20i + 80 - 60 - 40i + 48i - 32 = -30 + 100i \\ &Z_1 = \frac{\Delta_1}{\Delta} = \frac{-30 + 100i}{20 + 6i} = \frac{-10(3 - 10i)}{2(10 + 3i)} = \left(\frac{-5(3 - 10i) \cdot (10 - 3i)}{(10 + 3i) \cdot (10 - 3i)} \right) = \\ &= \frac{-5(30 - 9i - 100i - 30)}{10^2 + 3^2} = \frac{-5(-109i)}{1009} = 5i \\ &\Delta_2 = \begin{vmatrix} -1 - 4i & -9 + 10i \\ -6 - 6i & 12 + 8i \end{vmatrix} = (-1 - 4i) \cdot (12 + 8i) + (6 + 6i) \cdot (-9 + 10i) = \\ &= -12 - 8i - 48i + 32 - 54 + 60i - 54i - 60 = -94 - 50i \\ &Z_2 = \frac{\Delta_2}{\Delta} = \frac{-94 - 50i}{20 + 6i} = \frac{-2(47 + 25i) \cdot (10 - 3i)}{2(10 + 3i) \cdot (10 - 3i)} = \\ &\left(\frac{-1470 - 141i + 250i + 75}{10^2 + 3^2} \right) = \frac{-(545 + 109i)}{109} = -5 - i \end{split}$$
Otbet:

2. Тригонометрическая форма комплексного числа

В декартовой системе координат каждое комплексное число: z=a+ib изображается точкой M(a,b). Можно изображать число z также и радиусом-вектором точки M: \overline{OM} (смотри рисунок 1).

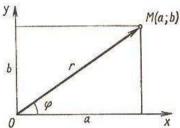


Рисунок 1 — Графическое изображение комплексного числа Длина вектора $\left| \overline{OM} \right| = r$ называется модулем комплексного

числа z: $\left|z\right|=r$. Из рис. 1 следует, что $\left|z\right|=\sqrt{a^2+b^2}$

Угол, образованный вектором OM с положительной полуосью OX называется аргументом числа z. Обозначается: $Argz = \varphi$ где $Argz \in (-\infty, \infty)$.

Условились в большинстве случаев выбирать главное (наименьшее по модулю) значение аргумента $z: \varphi = \arg z$, где: $-\pi < \arg z \le \pi$ или $0 \le \varphi < 2\pi$

Тригонометрическая форма комплексного числа: $a+ib=|z|(\cos\varphi+i\sin\varphi)$

Действительно, из рис. 1 видно, что $a = r \cos \varphi$ и $b = r \sin \varphi$, следовательно, $a + ib = r \cos \varphi + ir \sin \varphi = r(\cos \varphi + i \sin \varphi)$;

$$z = a + ib = |z|(\cos \varphi + i \sin \varphi),$$

причем: $r = \sqrt{a^2 + b^2}$, $tg\varphi = \frac{b}{a}$, $\cos \varphi = \frac{a}{r}$, $\sin \varphi = \frac{b}{r}$, r = |z|.

Действия над комплексными числами в тригонометрической форме:

- 1) пусть даны два комплексных числа: $z_1 = r_1(\cos \varphi_1 + i \sin \varphi_1)$ и $z_2 = r_2(os \varphi_2 + i \sin \varphi_2)$, произведение $z_1 \cdot z_2$ находится по формуле: $z_1 \cdot z_2 = r_1 r_2 [\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)]$.
- 2) Частное $\frac{z_1}{z_2}$ равно: $\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos(\varphi_1 \varphi_2) + i\sin(\varphi_1 \varphi_2)].$
- 3) Формула Муавра служит для возведения в степень комплексных чисел в тригонометрической форме: $z^{n} = [r(\cos \varphi + i \sin \varphi)]^{n} = r^{n} [\cos n\varphi + i \sin n\varphi].$
- 4) Извлечение корня из комплексного числа в тригонометрической форме производится по формуле: $z_k = \sqrt[n]{r(\cos\varphi + i\sin\varphi)} = \sqrt[n]{r} \left[\cos\frac{\varphi + 2\pi\kappa}{n} + i\sin\frac{\varphi + 2\pi\kappa}{n}\right]$

где: к=0,1,2,3,....,(n-1), т.е. в результате имеем n корней.

Задача 3. Вычислить: $\sqrt[3]{-8}$

Решение:
$$z = -8 \Rightarrow x = -8, y = 0; |z| = \sqrt{(-8)^3 + 0^3} = 8,$$

$$tg\varphi = \frac{y}{x} = 0$$

т. к. z = -8 находится в левой полуплоскости, то $\varphi = \pi$

$$\sqrt[3]{-8} = \sqrt[3]{8(\cos \pi + i \sin \pi)} = \sqrt[3]{8} \left(\cos \frac{\pi + 2\pi\kappa}{3} + i \sin \frac{\pi + 2\pi\kappa}{3}\right); \quad \kappa=0, 1,$$

2.

При к=0:

$$\sqrt[3]{-8} = 2\left(\cos\frac{\pi + 2\pi \cdot 0}{3} + i\sin\frac{\pi + 2\pi \cdot 0}{3}\right) = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = 1 + i\sqrt{3}$$

При к=1:

$$\sqrt[3]{-8} = 2\left(\cos\frac{\pi + 2\pi}{3} + i\sin\frac{\pi + 2\pi}{3}\right) = 2(\cos\pi + i\sin\pi) = -2$$

При к=2:

$$\sqrt[3]{-8} = 2\left(\cos\frac{\pi + 4\pi}{3} + i\sin\frac{\pi + 4\pi}{3}\right) = 2\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right) = 1 - i\sqrt{3}$$
Other: $\sqrt[3]{-8} = \left\{1 + i\sqrt{3}; -2 - 1 - \sqrt{3};\right\}$

Из теории функции действительного переменного известны формулы Эйлера: $e^{\pm it} = \left(\cos t \pm i \sin t\right), \ (1)$

$$e^{\pm it} = (\cos t \pm i \sin t), (1)$$

где $t \in R$, поэтому, зная, что z = x + iy, имеем: $e^z = e^{x+iy} = e^x \cdot e^{iy}$;

$$e^z = e^x (\cos y + i \sin y); \qquad (2)$$

итак, формула (2) позволяет представить показательную функцию e^z в тригонометрической форме.

Можно и наоборот, от тригонометрической комплексного числа перейти к показательной форме его: $z = r(\cos \varphi + i \sin \varphi)$, нο по формуле (1) : $\cos \varphi + i \sin \varphi = e^{i\varphi}$, следовательно:

$$z = re^{i\varphi} \quad (3)$$

показательная форма комплексного числа.

Символ $e^{i\varphi}$ обладает следующими свойствами:

- $1)e^{i2\pi n}=1$, где n- целое число.
- 2) $e^{i\varphi} = \overline{e^{-i\varphi}}$
- 3) $e^{i\varphi_1} \cdot e^{i\varphi_2} = e^{i(\varphi_1 \varphi_2)}$

4)
$$\frac{e^{i\varphi_1}}{e^{i\varphi_2}} = e^{i(\varphi_1 - \varphi_2)}$$

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1-10. Дана система линейных уравнений. Решить ее способами:

- с помощью формул Крамера
- методом Гаусса
- средствами матричного исчисления.

То средствами матричного исчисления.
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 5 \\ 2x_1 + 3x_2 + x_3 = 14 \\ 2x_1 + x_2 + 3x_3 = 11 \end{cases} \qquad 2. \begin{cases} x_1 - 2x_2 + 3x_3 = 6 \\ 2x_1 + 3x_2 - 4x_3 = 20 \\ 3x_1 - 2x_2 - 5x_3 = 6 \end{cases}$$

$$3. \begin{cases} 4x_1 - 3x_2 + 2x_3 = 9 \\ 2x_1 + 5x_2 - 3x_3 = 4 \\ 5x_1 + 6x_2 - 2x_3 = 18 \end{cases} \qquad 4. \begin{cases} x_1 + x_2 + 2x_3 = -1 \\ 2x_1 - x_2 + 2x_3 = -4 \\ 4x_1 + x_2 + 4x_3 = -2 \end{cases}$$

$$5. \begin{cases} 2x_1 - x_2 - x_3 = 4 \\ 3x_1 + 4x_2 - 2x_3 = 11 \\ 3x_1 - 2x_2 + 4x_3 = 11 \end{cases} \qquad 6. \begin{cases} 3x_1 + 4x_2 + 2x_3 = 8 \\ 2x_1 - x_2 - 3x_3 = -4 \\ x_1 + 5x_2 + x_3 = 0 \end{cases}$$

$$7. \begin{cases} x_1 + x_2 - x_3 = 1 \\ 3x_1 + 2x_2 - 3x_3 = -4 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 - 2x_3 = -3 \\ 3x_1 + x_2 - 2x_3 = -3 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 - 2x_3 = -3 \\ 3x_1 - 5x_2 - 6x_3 = -9 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 4x_3 = 31 \\ 3x_1 - 5x_2 - 6x_3 = -9 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 4x_3 = 31 \\ 3x_1 - 5x_2 - 6x_3 = -9 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 4x_3 = 31 \\ 3x_1 - 5x_2 - 6x_3 = -9 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 4x_3 = 31 \\ 3x_1 - 5x_2 - 6x_3 = -9 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 4x_3 = 31 \\ 3x_1 - 5x_2 - 6x_3 = -9 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 4x_3 = 31 \\ 3x_1 - 5x_2 - 6x_3 = -9 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 4x_3 = 31 \\ 3x_1 - 5x_2 - 6x_3 = -9 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \\ 3x_1 - 5x_2 - 6x_3 = -9 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \\ 3x_1 - 5x_2 - 6x_3 = -9 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \\ 3x_1 - 5x_2 - 6x_3 = -9 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \\ 3x_1 - 5x_2 - 6x_3 = -9 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \\ 3x_1 - 5x_2 - 6x_3 = -9 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \\ 3x_1 - 5x_2 - 6x_3 = -9 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \\ 3x_1 - 5x_2 - 6x_3 = -9 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \\ 3x_1 - 5x_2 - 6x_3 = -9 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \\ 3x_1 - 2x_2 + 2x_3 = 3 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \end{cases}$$

$$8. \begin{cases} x_1 + 2x_2 + 2x_3 = 3 \end{cases}$$

11-20. Найти собственные числа и собственные векторы матрицы.

1.
$$A = \begin{pmatrix} 0 & 1 & 0 \\ -3 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}$$
 2. $A = \begin{pmatrix} 1 & -3 & 3 \\ -2 & -6 & 13 \\ -1 & -4 & 8 \end{pmatrix}$

3.
$$A = \begin{pmatrix} 4 & -5 & 7 \\ 1 & -4 & 9 \\ -4 & 0 & 5 \end{pmatrix}$$
4. $A = \begin{pmatrix} 5 & 6 & 3 \\ -1 & 0 & 1 \\ 1 & 2 & -1 \end{pmatrix}$
5. $A = \begin{pmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{pmatrix}$
6. $A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}$
7. $A = \begin{pmatrix} 7 & 0 & 0 \\ 10 & -19 & 10 \\ 12 & -24 & 13 \end{pmatrix}$
8. $A = \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2 \end{pmatrix}$
9. $A = \begin{pmatrix} 1 & -3 & 4 \\ 4 & -7 & 8 \\ 6 & -7 & 7 \end{pmatrix}$
10. $A = \begin{pmatrix} 0 & 7 & 4 \\ 0 & 1 & 0 \\ 1 & 13 & 0 \end{pmatrix}$

21 - 30. В таблице 1 даны координаты вершин пирамиды A_1 A_2 A_3 A_4 . Найти: 1) длину ребра A_1A_2 ; 2) угол между рёбрами A_1A_2 и A_1A_4 ; 3) угол между ребром A_1A_4 и гранью A_1 A_2 A_3 ; 4) площадь грани A_1 A_2 A_3 ; 5) объём пирамиды; 6) уравнение прямой A_1 A_2 ; 7) уравнение плоскости A_1 A_2 A_3 ; 8) уравнение высоты, опущенной из вершины A_4 на грань A_1 A_2 A_3 .

Таблица 1.

Номер задачи	Точка A_1	Точка A_2	Точка A_3	Точка A_4
21	(4; 2; 5)	(0; 7; 2)	(0; 2; 7)	(1; 5; 0)
22	(4; 4; 10)	(4; 10; 2)	(2; 8; 4)	(9; 6; 9)
23	(4; 6; 5)	(6; 9; 4)	(2; 10; 10)	(7; 5; 9)
24	(3; 5; 4)	(8; 7; 4)	(5; 10; 4)	(4; 7; 8)
25	(10; 6; 6)	(-2; 8; 2)	(6; 8; 9)	(7; 10; 3)
26	(1; 8; 2)	(5; 2; 6)	(5; 7; 4)	(4; 10; 9)

27	(6; 5; 5)	(4; 9; 5)	(4; 6; 11)	(6; 9; 3)
28	(7; 2; 2)	(5; 7; 7)	(5; 3; 1)	(2; 3; 7)
29	(8; 6; 4)	(10; 5; 5)	(5; 6; 8)	(8; 10; 7)
30	(7; 7; 3)	(6; 5; 8)	(3; 5; 8)	(8; 4; 1)

31 — **40.** Даны координаты вершин треугольника ABC в таблице 2. Найти: а) длины высоты, медианы и биссектрисы из указанной вершины, а также косинус этого угла; б) составить уравнение высоты из указанной вершины; в) составить уравнение медианы из указанной вершины; г) найти точку пересечения N полученных в б) и в) медианы и высоты; д) составить уравнение прямой, проходящей через вершину, указанную в пункте а) параллельно противоположной стороне.

Таблица 2.

Номер	Точка	Точка	Точка	a)	б)	в)
задачи	\boldsymbol{A}	В	C			
31	(4; 5)	(7;4)	(-6;-5)	A	С	В
32	(-2;7)	(2;-5)	(6;3)	В	Α	С
33	(5;-1)	(-7;-4)	(6;4)	С	В	Α
34	(1;-7)	(6;2)	(4;-3)	A	В	С
35	(3;-2)	(-2;-7)	(-4;-5)	В	С	Α
36	(4;-5)	(2;4)	(-3;6)	С	Α	В
37	(-2;-3)	(1;1)	(-3;-6)	A	В	Α
38	(2;0)	(-3;-2)	(-5; 3)	В	Α	В
39	(1;5)	(2;-7)	(-6;2)	С	Α	С
40	(7; 2)	(-5; 5)	(1;-2)	С	В	С

41 — **50.** Решить систему уравнений $\begin{cases} a_{11}z_1 + a_{12}z_2 = b_1 \\ a_{21}z_1 + a_{22}z = b_2 \end{cases}$ (соответствующе коэффициенты даны в таблице 3).

Номер	a_{11}	a_{12}	b_1	a_{21}	a_{22}	b_2
задачи		12	-		22	
41	2-5i	-7+6i	74+12i	-5+6i	-7+7i	63-96i
42	3+i	-2+6i	-32+26i	7-4i	4-4i	37+39i
43	5+3i	8-i	6-47i	-6+4i	-4+5i	11+2i
44	2-2i	8-2i	80+60i	-3-3i	-2-7i	56-82i
45	6+i	-1-3i	-41+26i	-2+8i	-1-i	-15-17i
46	8+6i	-8+3i	12-53i	-8-6i	3+7i	53+73i
47	5+5i	4+5i	11-60i	-5+4i	-2-5i	50+24i
48	-3-2i	2+i	7+33i	-6+6i	-8+5i	2-50i
49	-4-7i	6-8i	-24-79i	-6-8i	5-6i	-6-95i
50	-1-5i	-2-4i	13+35i	5+5i	5-4i	-62-8i

Список рекомендуемой литературы

- 1) Дифференциальное и интегральное исчисления: в 2-х т.: учеб. пособ. для вузов. Т.2 / Н. С. Пискунов. изд. стереотип. М.: Интеграл-Пресс, 2009. 544 с.
- 2) Минорский В.П. Сборник задач по высшей математике. М.: ФИЗМАТЛИТ, 2008. 336 с.
- 3) Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры. М.: Физматлит, 2009. 308с.
- 4) Берман Г.Н. Сборник задач по курсу математического анализа. СПб. : [б. и.], 2006. 432 с.
- 5) Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. М., Наука, 1984.
- 6) Клетеник Д.В. Сборник задач по аналитической геометрии. М., Наука, 1984.
- 7) Фихтенгольц Г. М. Основы математического анализа. В 2т.-Спб..-Лань.-1999
- 8) Сборник задач по математике для втузов: Линейная алгебра и основы математического анализа (под ред. А.В.Ефимова и Б.П.Демидовича). М., Наука, 1986.

Учебное издание

Контрольная работа №1 по математике

Методические указания для студентов – заочников

Составители: СОБОЛЕВ Алексей Валерьевич МАТВЕЕВ Владимир Александрович ВОРОБЬЕВА Людмила Дмитриевна

Редактор Туманова Е.М. Подписано в печать 07.09.2012г. Формат 60×84 1/16. Бумага «Снегурочка» Отпечатано на ризографе. Усл. печ. л. 2,55. Уч.-изд. л. 1,8. Тираж 50 экз. Заказ №

ФГБОУ ВПО «Российский химико-технологический университет им. Д.И. Менделеева» Новомосковский институт (филиал). Издательский центр. Адрес университета: 125047, Москва, Миусская пл., 9 Адрес института: 301670, Новомосковск, Тульской обл., Дружбы, 8.