Среда, 3 Июль 2024, 12:22

Сайт: Система поддержки учебных курсов НИ РХТУ
Курс: Электронная библиотека (Электронная библиотека)
Глоссарий: Терминологический словарь

Г

Генератор ацетиленовый

Аппарат для получения ацетилена С2Н2 разложением карбида кальция CaC2 водой. В результате реакции CaC2+2H2O= C2 H2 + Ca(OH)2 из 1 кг технического CaC2 получают 235-285 л C2 H2 при 20 °С и 101325 н/м2 (760 мм pm. cm.); теоретически 1 кг CaC2 даёт 370 л C2H2. Разложение CaC2 с образованием ацетилена проходит в газообразователе генератора, откуда получаемый газ поступает в газосборник (газгольдер).

Геометрия резца

Форма и углы заточки режущей части резца. Г. р. влияет на характер процесса резания материалов, на его производительность и экономичность, качество обработанной детали, стойкость (время работы до нормального затупления) резца и т.п.

Все определения по Г.р., приводимые ниже, справедливы для др. режущих инструментов (свёрл, протяжек, фрез). Режущую часть составляют рабочие поверхности (рис. 1): передняя, по которой сходит образующаяся в процессе резания стружка, задняя главная и задняя вспомогательная, обращенные к обрабатываемой поверхности заготовки. Рабочие поверхности при пересечении образуют режущие кромки.

Схема процесса резания (а) и основные элементы резца (б)

Рис. 1. Схема процесса резания (а) и основные элементы резца (б)

Главная режущая кромка, выполняющая основную работу при резании, образуется в результате пересечения передней и главной задней поверхности; вспомогательная режущая кромка - при пересечении передней и вспомогательной задней поверхности. Место сопряжения главной и вспомогательной режущих кромок называется вершиной резца. Вершина резца — наиболее ослабленная его часть, определяющая прочность режущей части кромки резца в целом; поэтому для повышения прочности вершина резца делается либо закруглённой (с радиусом 0,5—2 мм), либо в виде прямолинейной переходной режущей кромки (длиной 0,5—3 мм).

Элементы режущей части резца подразделяют на статические, определяющие углы заточки инструмента, и кинематические, зависящие от характера процесса резания и от установки резца. Углы заточки определяют форму режущей части при проектировании, изготовлении и контроле резца. Режущая часть резца имеет форму клина, заточенного под определёнными углами. Для определения углов установлены следующие координатные плоскости: плоскость резания и основная плоскость. Плоскость резания — это плоскость, касательная к поверхности резания и проходящая через главную режущую кромку. Основная плоскость — плоскость, параллельная продольной (параллельной оси заготовки) и поперечной (перпендикулярной оси заготовки) подачам резца. Эти координатные плоскости взаимно перпендикулярны. Главные углы резца определяются в главной секущей плоскости, перпендикулярной проекции главной режущей кромки на основную плоскость (рис. 2).

Углы резания

Рис. 2. Углы резания

Главный задний угол a — угол между главной задней поверхностью резца и плоскостью резания. При выборе заднего угла, во избежание трения задней поверхности резца об обрабатываемую поверхность и поверхность резания, учитывают величину подачи: чем она больше, тем больше задний угол. Угол заострения b — угол между передней и главной задней поверхностями резца. Главный передний угол g — угол между передней поверхностью резца и плоскостью, перпендикулярной плоскости резания. Выбор переднего угла зависит прежде всего от физико-механических свойств обрабатываемого материала. Чем больше передний угол, тем легче процесс образования стружки, тем меньше усилие резания и затрачиваемая мощность. Чем выше твёрдость обрабатываемого материала, тем меньшие значения передних углов резца принимают для его обработки. Угол резания d — угол между передней поверхностью резца и плоскостью резания. Главный угол в плане j— угол между направлением подачи и проекцией главной режущей кромки на основную плоскость; вспомогательный угол в плане j1 — угол между направлением подачи и проекцией вспомогательной режущей кромки на основную плоскость. Углы j и j1 определяют, с одной стороны, условия работы режущей кромки, а с другой — распределение нагрузки от силы резания. Чем меньше угол в плане, тем (при неизменной глубине резания и подаче) меньше тепловая и силовая нагрузки на единицу длины главной режущей кромки, а следовательно, лучше условия работы. Уменьшение угла в плане ниже оптимального значения может привести к чрезмерной деформации обрабатываемой заготовки, к снижению точности обработки и вибрациям. Угол при вершине в плане e — угол между проекциями режущих кромок на основную плоскость: e = 180°— (j +j1). Угол в плане переходной (прямолинейной) режущей кромки j0 — угол между направлением подачи и проекцией переходной режущей кромки на основную плоскость: обычно j0 = j /2. Угол наклона главной режущей кромки l — угол, заключённый между режущей кромкой и линией, проведённой через вершину резца параллельно основной плоскости; угол l положительный, когда вершина резца — наинизшая точка режущей кромки; отрицательный, когда вершина резца — наивысшая точка, и равен нулю, если главная режущая кромка параллельна основной плоскости. Угол l оказывает влияние на направление схода стружки.

Лит.: Беспрозванный И. М., Основы теории резания металлов, М., 1948; Русские учёные - основоположники науки о резании металлов: И. А. Тиме, К. А. Зворыкин, Я. Г. Усачёв, А. Н. Челюсткин. Жизнь, деятельность и избранные труды, М., 1952; Резание металлов, М., 1954; Аваков А. А., Физические основы теории стойкости режущих инструментов, М., 1960; Панкин А. В., Обработка металлов резанием, М., 1961; Развитие науки о резании металлов, М., 1967; Электрические явления при трении н резании металлов, М., 1969: Брюхов В. А., Павлов Э. Н., Расчет режимов резания и нормирование с помощью ЭВМ, М., 1969; Роман О. В., Левенцов А. А., Шелковский И. Ф., Обработка металлов резанием и станки, Минск, 1970.

В. В. Данилевский

Герметизирующие составы

Герметики, материалы на основе различных полимеров, предназначены для нанесения на болтовые, заклёпочные и др. соединения металлических конструкций, приборов, агрегатов, для уплотнения стыков между панелями наружных стен зданий с целью обеспечения их непроницаемости.

Кроме полимера, Г.с. содержат обычно наполнители, вулканизующие агенты или отвердители и др. компоненты. Г.с. применяют в виде паст, замазок или растворов в органических растворителях. Герметизирующий материал образуется непосредственно на соединительном шве в результате вулканизации (отверждения) полимерной основы Г.с. или испарения растворителя.

Основные требования к Г.с.: прочность и эластичность; высокая адгезия к металлам; устойчивость к действию рабочих сред (керосин, бензин, масла, спирт, кислоты, щёлочи, вода и др.); тепло- и морозостойкость; кроме того, Г.с. не должны вызывать коррозии металлов. Г. с., применяемые для защиты радиоэлектронной аппаратуры, должны обладать высокими электроизоляционными свойствами.

Наиболее распространённые Г.с. изготовляют на основе полисульфидных каучуков (например, Г.с. типа У-30, УТ-32) и кремнийорганических каучуков (например, Г.с. типа виксинт, ВПГ, сильпен). Г.с. широко используют в авиационной, автомобильной, судостроительной и др. отраслях промышленности, в строительстве. Они находят применение также и в областях, не связанных с их основным назначением, например в криминалистике, технике зубопротезирования и др. для изготовления точных слепков и отливок.

Лит.: Кошелев Ф. Ф., Корнев А. Е., Климов Н. С., Общая технология резины, 3 изд., М., 1968; Справочник инженера-строителя, т. 1. 2 изд., под ред. И. А. Онуфриева и А. С. Данилевского, М., 1965.

Гетероцепные полимеры

Полимеры, макромолекулы которых содержат в основной цепи разнородные атомы; см. Полимеры.

Гетинакс

Слоистый пластик на основе бумаги, пропитанной термореактивной синтетической смолой.

Из Г. изготовляют листы и цилиндрические заготовки с высокими механическими и электроизоляционными свойствами. Применяют при производстве трансформаторов, телефонов, деталей радиоаппаратуры и др.

Гетинакс, слоистый пластик на основе бумаги и синтетических смол. Связующим чаще всего служат фенолоформальдегидные смолы, реже — меламиноформальдегидные, эпоксиднофенолоанилиноформальдегидные. Содержание смолы в Г. 40—55%. Иногда Г. фольгируют красномедной электролитической фольгой, облицовывают хлопчатобумажными, стеклянными или асбестовыми тканями, армируют металлической сеткой. В зависимости от назначения Г. выпускают нескольких марок.

Г. обладает высокой механической прочностью, хорошими электроизоляционными свойствами. Ниже приведены некоторые свойства Г.: плотность 1, 25 г/см2; теплостойкость по Мартенсу 150—160°С; прочность при растяжении 70—100 МН/м2 (700—1000 кгс/см2), прочность при статическим изгибе (по основе) 80—140 МН/м2 (800—1400 кгс/см2); удельная ударная вязкость 1, 3—1, 5 кДж/м2 (13—15 кгс (см/см2); водопоглощение за 24 ч 0, 3—0, 6 г/дм2; удельное поверхностное электрическое сопротивление 1010—1012 Ом; тангенс угла диэлектрических потерь при 103 кГц 0, 07—0, 10.

Для получения листового Г. бумагу пропитывают спиртовым или водноспиртовым раствором резольной смолы либо расплавленной смолой под давлением. Пропитанные листы сушат, режут, собирают в пакеты и прессуют при 150—160°С, затем охлаждают под давлением. Иногда Г. подвергают дополнительной термообработке (ступенчатому нагреву до 120—130°С). Основную массу деталей из Г. изготовляют механической обработкой.

Г. применяют как электроизоляционный материал для длительной работы при температурах от — 65 до +105°С; для производства панелей, крышек, втулок, шестерён, шайб и др., а также в мебельном производстве. Из фольгированного Г. изготовляют печатные схемы.

Лит.: Барановский В. В., Шугал Я. Л., Слоистые пластики электротехнического назначения, М. — Л., 1963.

Гибка

Операции ковки, горячей и холодной штамповки, посредством которых придаётся изогнутая форма всей заготовке или её части. Под Г. понимают также слесарную операцию изгибания заготовок из профильных материалов.

Под действием изгибающего момента заготовка деформируется (см. рис.), наружные слои её растягиваются, внутренние — сжимаются. Г. осуществляется с помощью бульдозеров, роликовых и ротационных гибочных машин (листогибочных и сортогибочных), машин для гибки с растяжением и др. Широкое распространение получила Г. с растяжением, позволяющая устранить пружинение и гофрирование заготовок. Г. изготовляют детали машин, приборов, различные метизы.

Схема гибки

Рис.1. Схема гибки

Лит.: Сторожев М. В., Попов Е. А., Теория обработки металлов давлением, 2 изд., М., 1963.

Д.И.Браславский

Гибкая автоматизированная линия (ГАЛ)

Гибкая производственная система, состоящая из нескольких гибких производственных модулей, объединенных автоматизированной системой управления, в которой технологическое оборудование расположено в принятой последовательности технологических операций.

Гибкое автоматизированное производство (ГАП)

Производственная система, состоящая из одного или нескольких гибких производственных комплексов, объединенных автоматизированной системой управления производством и автоматизированной транспортно-складской системой.

ГАП обеспечивает быстрый переход на изготовление новых изделий с помощью ряда автоматических систем: проектирования (САПР), технологической подготовки производства (АСТПП), управления предприятием (АСУП), инструментального обеспечения (АСИО), контроля (САК), удаления отходов (АСУО) и др.

Гибочная машина

Машина, служащая для изгибания в холодном и горячем состоянии деталей из прямых листовых, профильных и трубных заготовок. Универсальные Г. м. бывают нескольких типов: трёх- и четырёхвалковые (ротационные); роликовые: с поворотной траверсой; с поворотным шаблоном или рычагом. Трёх- и четырёхвалковые машины применяются для гибки из листовых заготовок цилиндрических и конических обечаек и дугообразных элементов. Толщина заготовок — от десятых долей до нескольких десятков мм; заготовки толщиной более 40—50 мм сгибаются в горячем состоянии. Машины этого типа выполняются преимущественно с горизонтальным расположением валков (рис. 1).

Принципиальная схема трёхпалковой гибочной машины с горизонтальным расположением валков

Рис. 1. Принципиальная схема трёхпалковой гибочной машины с горизонтальным расположением валков (1 – боковые валки, 2 – средний валок, 3 – задний подшипник среднего валка, 4 – консольный конец нажимного механизма).

Положение среднего валка 2 или боковых валков 1 регулируется по высоте, что создаёт прогиб заготовки на одном из её участков; вращением среднего или боковых валков осуществляется гибка заготовки по всей длине. Для выдачи из машины заготовки, согнутой по замкнутой окружности, задний подшипник 3 среднего валка выполняется откидным и предусматривается запрокидывание вверх заднего конца валка в результате опускания переднего консольного конца нажимным механизмом 4. Для гибки конических обечаек с любым углом конусности регулируемые по высоте валки устанавливаются под углом. Роликовые машины предназначаются для гибки кольцевых и дугообразных деталей из профильных заготовок. На наиболее мощных машинах этого типа можно сгибать на ребро в холодном состоянии полосу размером до 200 ? 40 мм. Для удобства замены три гибочных ролика располагают на валах консольно. На небольших машинах оси роликов расположены горизонтально, а на более мощных — вертикально.
Машины с поворотной траверсой (рис. 2) служат в основном для гибки из листовых заготовок деталей с небольшими радиусами закруглений (типа ящиков и тонкостенных профилей).

Принципиальная схема гибочной машины с поворотной траверсой

Рис. 2. Принципиальная схема гибочной машины с поворотной траверсой (1 – поворотная траверса, 2 – шаблон-вставка, 3 – прижимная траверса, 4 – неподвижная траверса, 5 – кулиса поворотной траверсы, 6 – стойка траверс).

Машина имеет три траверсы: неподвижную (стол) 4, прижимную 3 и поворотную 1. Заготовка укладывается по упорам на неподвижную траверсу и сверху зажимается прижимной траверсой. Вращением поворотной траверсы выступающая из траверс 4 и 3 кромка заготовки загибается вокруг шаблона-вставки 2, определяющего радиус изгиба. Траверсы закреплены в двух стойках 6. Поворотная траверса устанавливается в двух кулисах 5, которые поворачиваются в цапфах подшипников стоек. Наибольшая длина сгибаемой кромки определяется размером L. На этих машинах можно изгибать заготовки толщиной до 15 и шириной до 5000 мм.

Машины для гибки по шаблону (рис. 3) имеют поворотный стол или шаблон (реже поворотный рычаг) и закрепленный нажимной ролик.

Принципиальная схема гибки по шаблону

Рис. 3. Принципиальная схема гибки по шаблону (1 – заготовка, 2 – прижим, 3 – шаблон, 4 – нажимной ролик).

На этих машинах изготовляют из профильных заготовок детали типа фланцев, рёбер жёсткости, изгибают трубные элементы. Заготовка 1 предварительно крепится передним концом прижима 2 на шаблоне 3, установленном на столе машины. К заготовке на некотором расстоянии от зажима подводится нажимной ролик 4. Затем гибочный шаблон начинает вращаться, и заготовка, опирающаяся задним концом на нажимной ролик, сгибается. Наиболее мощные машины этого типа применяются для гибки труб. Гнутые детали изготовляют также на специальных гибочных прессах (см. Бульдозер).
Г. м. применяют в котлостроении, судостроении, химической, нефтяной промышленности и машиностроении.

Гигрометр

Прибор для определения влажности воздуха. Наиболее распространены психрометр и волосяной Г., измеряющий относительную влажность воздуха по изменению длины обезжиренного человеческого волоса в зависимости от влажности воздуха.