Четверг, 4 Июль 2024, 02:22

Сайт: Система поддержки учебных курсов НИ РХТУ
Курс: Материаловедение. ТКМ (Профиль ПТЭ) (Материаловедение. ТКМ)
Глоссарий: Терминологический словарь

Медведев Сергей

Минералокерамический режущий инструмент

Минералокерамический инструмент - лезвийный инструмент с лезвиями из минералокерамики. ГОСТ 25751.

Многолезвийный инструмент

Металлорежущий инструмент, имеющий более одной главной режущей кромки (как правило, одинаковые по форме и геометрическим параметрам). К М. и. относят сверла, зенкеры, развертки, фрезы, протяжки, метчики, плашки, напильники и др.

Фрезы

Рис.1. Фрезы:

а - цилиндрическая; б - торцовая; в- дисковая; г - концевая;

д - угловая; е - шпоночная; ж - фасонная.

а-в - зенкеры; г-е - развертки; ж - метчиклы спирального сверла

Рис. 2 Инструменты для обработки отверстий на сверлильных станках: а-в - зенкеры; г-е - развертки; ж - метчиклы спирального сверла

Многопроходная сварка

Сварка с присадочным материалом, при которой образуется многопроходный шов.

М. с. используется в случае, когда однопроходная сварка не может быть использована. Число проходов nпр при М. с. может быть определено сопоставлением площадей сечения наплавленного металла Fн и электрода FЭ

nпр = Fн / FЭ

Многопроходный шов

Однослойный шов сварного соединения, образованный несколькими проходами.

Число проходов nпрМ. ш. может быть определено сопоставлением площадей сечения наплавленного металла Fн и электрода FЭ

nпр = Fн / FЭ

Многослойная сварка

Сварка с присадочным материалом, при которой образуется многослойный шов.

Число слоев nсл при М. с. может быть определено сопоставлением толщины сечения наплавленного металла д и диаметра электрода dЭ

nсл = д / dЭ

Многослойная сталь

Листовая сталь из нескольких слоев разного состава.

М. с. получают: разливкой сталей различных составов в общую изложницу специальной конструкции (с разделительными стенками) и последующей прокаткой отлитого слитка; сваркой нескольких листов стали различных составов при совместной прокатке; штамповкой взрывом; наплавкой. М. с. применяют для повышения эксплуатационных свойств материала и экономии дорогостоящих сталей.

Многослойный шов

Шов сварного соединения, образованный несколькими слоями сварного шва.

Для уменьшения деформации изделия при образовании М. ш. присадочный материал вводят в шов соединения в определенном порядке: каждый последующий сварочный валик укладывают после естественного охлаждения предыдущего до температуры не выше 400 С. При выполнении V-образного стыкового и углового шва в конце сварки делают проход с обратной стороны шва (со стороны корня шва), предупреждая этим непровар отдельных участков (предварительно рекомендуется разделка корня шва спец. резаком со скругленным торцом). Зачистка выступающих над поверхностью изделия сварочных валиков не требуется.

Модификатор металлов и сплавов

От позднелат. modifico - видоизменяю, меняю форму.

Вещество, малые дозы которого существенно изменяют структуру и свойства обработанного им металла или сплава. Эффект от такой обработки называется модифицированием.

Согласно классификации П. А. Ребиндера, М. делят на две группы. М. первого рода - поверхностно-активные вещества - адсорбируются на зародышах, возникающих на центрах кристаллизации, и тормозят их рост, в результате чего появляется большое количество новых зародышей, рост которых становится возможным из-за уменьшения концентрации М. на их поверхности. М. второго рода - т. н. М. инокулирующего действия - облегчают образование в расплаве центров кристаллизации, например коллоидных частиц, оказывающих влияние на зарождение кристаллов металлических фаз при затвердевании. При появлении большого числа таких центров образуется повышенное количество мелких зёрен основной фазы или мелких включений других фаз. Иногда на этих центрах кристаллизуются фазы, иначе не выпадающие в материале.

М. обеих групп размельчают зёрна материала (включений), но М. первого рода усиливают переохлаждение расплавов при кристаллизации, а второго - уменьшают.

Лит.: Ребиндер П. А., Липман М. С., Физико-химические основы модификации металлов и сплавов малыми поверхностно активными примесями, в кн.: Исследования в области прикладной физико-химии поверхностных явлений, М. - Л., 1936. См. также лит. при ст. Модифицирование металлов и сплавов.

А. А. Жуков

Модифицирование металлов и сплавов

Введение в расплавленные металлы и сплавы модификаторов, небольшие количества которых резко влияют на кристаллизацию, например вызывают формирование структурных составляющих в округлой или измельченной форме и способствуют их равномерному распределению в основной фазе.

В результате М. сплавы приобретают более тонкую структуру, что улучшает их механические свойства. М. применяется при производстве отливок из чугуна и силуминов (см. Алюминиевые сплавы) и др. М. отличается от микролегирования, при котором увеличение дозировки присадки приводит к обычному легированию (без явной границы между получаемыми эффектами). При М. увеличение дозировки присадки либо невозможно (из-за малой растворимости, летучести), либо неэффективно, либо вредно (перемодифицирование). Иногда при смешении двух различных расплавов наблюдается явление жидкого М. Эффект, подобный М., может быть получен при некоторых физических методах воздействия на жидкий металл, например при ультразвуковой обработке, наложении электромагнитного поля и др.

Лит.: Леви Л. И., Кантоник С. К., Литейные сплавы, М., 1967.

А. А. Жуков

Молибден

Лат. Molybdaenum.

Mo - химический элемент VI группы периодической системы Менделеева; атомный номер 42, атомная масса 95,94; светло-серый тугоплавкий металл. В природе элемент представлен семью стабильными изотопами с массовыми числами 92, 94-98 и 100, из которых наиболее распространён 98Mo (23,75 %). Вплоть до 18 в. основной минерал М. молибденовый блеск (молибденит) не отличали от графита и свинцового блеска, т. к. они очень схожи по внешнему виду. Эти минералы носили общее название «молибден» (от греч. molybdos - свинец).

Элемент М. открыл в 1778 шведский химик К. Шееле, выделивший при обработке молибденита азотной кислотой молибденовую кислоту. Шведский химик П. Гьельм в 1782 впервые получил металлический М. восстановлением MoO3 углеродом.

Распространение в природе. М. - типичный редкий элемент, его содержание в земной коре 1,1Ч10-4 % (по массе). Общее число минералов М. 15, большая часть их (различные молибдаты) образуется в биосфере. В магматических процессах М. связан преимущественно с кислой магмой, с гранитоидами. В мантии М. мало, в ультраосновных породах лишь 2Ч10-5 %. Накопление М. связано с глубинными горячими водами, из которых он осаждается в форме молибденита MoS2 (главный промышленный минерал М.), образуя гидротермальные месторождения. Важнейшим осадителем М. из вод служит H2S.

Геохимия М. в биосфере тесно связана с живым веществом и продуктами его распада; среднее содержание М. в организмах 1Ч10-5 %. На земной поверхности, особенно в щелочных условиях, Mo (IV) легко окисляется до молибдатов, многие из которых сравнительно растворимы. В ландшафтах сухого климата М. легко мигрирует, накапливаясь при испарении в соляных озёрах (до 1Ч10-3 %) и солончаках. Во влажном климате, в кислых почвах М. часто малоподвижен; здесь требуются удобрения, содержащие М. (например, для бобовых).

В речных водах М. мало (10-7-10-8 %). Поступая со стоком в океан, М. частично накапливается в морской воде (в результате её испарения М. здесь 1Ч10-6 %), частично осаждается, концентрируясь в глинистых илах, богатых органическим веществом и H2S.

Помимо молибденовых руд, источником М. служат также некоторые молибденосодержащие медные и медно-свинцово-цинковые руды. Добыча М. быстро растет.

Физические и химические свойства. М. кристаллизуется в кубической объёмно-центрированной решётке с периодом а = 3,14 . Атомный радиус 1,4 , ионные радиусы Mo4+ 0,68 , Mo6+ 0,62 . Плотность 10,2 г/см3 (20 °С); tпл 2620 ± 10 °С; tkип около 4800 °С. Удельная теплоёмкость при 20-100 °С 0,272 кдж/(кгЧК), т. е. 0,065 кал/(гЧград). Теплопроводность при 20 °С 146,65 вт/(смЧК), т. е. 0,35 кал/(смЧсекЧград). Термический коэффициент линейного расширения (5,8-6,2) Ч10-6 при 25-700 °С. Удельное электрическое сопротивление 5,2Ч10-8 омЧм, т. е. 5,2Ч10-6 омЧсм; работа выхода электронов 4,37 эв. М. парамагнитен; атомная магнитная восприимчивость ~ 90Ч10-6 (20 °С).

Механические свойства М. зависят от чистоты металла и предшествующей механической и термической его обработки. Так, твёрдость по Бринеллю 1500-1600 Мн/м2, т. е. 150-160 кгс/мм2 (для спечённого штабика), 2000-2300 Мн/м2 (для кованого прутка) и 1400-1850 Мн/м2 (для отожжённой проволоки); предел прочности для отожжённой проволоки при растяжении 800-1200 Мн/м2. Модуль упругости М. 285-300 Гн/м2. Mo более пластичен, чем W. Рекристаллизующий отжиг не приводит к хрупкости металла.

На воздухе при обычной температуре М. устойчив. Начало окисления (цвета побежалости) наблюдается при 400 °С. Начиная с 600 °С металл быстро окисляется с образованием MoO3. Пары воды при температурах выше 700 °С интенсивно окисляют М. до MoO2. С водородом М. химически не реагирует вплоть до плавления. Фтор действует на М. при обычной температуре, хлор при 250 °С, образуя MoF6 и MoCl5. При действии паров серы и сероводорода соответственно выше 440 и 800 °С образуется дисульфид MoS2. С азотом М. выше 1500 °С образует нитрид (вероятно, Mo2N). Твёрдый углерод и углеводороды, а также окись углерода при 1100-1200 °С взаимодействуют с металлом с образованием карбида Mo2C (плавится с разложением при 2400 °С). Выше 1200 °С М. реагирует с кремнием, образуя силицид MoSi2, обладающий высокой устойчивостью на воздухе вплоть до 1500-1600 °С (его микротвёрдость 14 100 Мн/м2).

В соляной и серной кислотах М. несколько растворим лишь при 80-100 °С. Азотная кислота, царская водка и перекись водорода медленно растворяют металл на холоду, быстро - при нагревании. Хорошим растворителем М. служит смесь азотной и серной кислот. Вольфрам в смеси этих кислот не растворяется. В холодных растворах щелочей М. устойчив, но несколько корродирует при нагревании. Конфигурация внешних электронов атома Mo4d55s1, наиболее характерная валентность 6. Известны также соединения 5-, 4-, 3- и 2-валентиого М.

М. образует два устойчивых окисла - трёхокись MoO3 (белые кристаллы с зеленоватым оттенком, tпл 795 °С, tkип 1155 °С) и двуокись MoO2 (тёмно-коричневого цвета). Кроме того, известны промежуточные окислы, соответствующие по составу гомологическому ряду Mon O3n-1 (Mo9O26, Mo8O23, Mo4O11); все они термически неустойчивы и выше 700 °С разлагаются с образованием MoO3 и MoO2. Трёхокись MoO3 образует простые (или нормальные) кислоты М. - моногидрат H2MoO4, дигидрат H2MoO4Ч H2O и изополикислоты - H6Mo7O24, H4Mo6O24, H4Mo8O26 и др. Соли нормальной кислоты называются нормальными молибдатами, а поликислот - полимолибдатами. Кроме названных выше, известно несколько надкислот М. - H2MoOx; (x - от 5 до 8) и комплексных гетерополисоедипений с фосфорной, мышьяковой и борной кислотами. Одна из распространённых солей гетерополикислот - фосфоромолибдат аммония (MH4)3 [Р (Mo3O10)4] Ч 6H2O. Из галогенидов и оксигалогенидов М. наибольшее значение имеют фторид MoF6 (tпл 17,5 °С, tkип 35°C) и хлорид MoCI, (tпл 194 °С, tkип 268 °С). Они могут быть легко очищены перегонкой и используются для получения М.высокой чистоты.

Достоверно установлено существование трёх сульфидов М. - MoS3, MoS2 и Mo2S3. Практическое значение имеют первые два. Дисульфид MoS2 встречается в природе в виде минерала молибденита; может быть получен действием серы на М. или при сплавлении MoO3 с содой и серой. Дисульфид практически нерастворим в воде, HCl, разбавленной H2SO4. Распадается выше 1200 °С с образованием Mo2S3.

При пропускании сероводорода в нагретые подкисленные растворы молибдатов осаждается MoS3.

Получение. Основным сырьём для производства М., его сплавов и соединений служат стандартные молибденитовые концентраты, содержащие 47-50 % Mo, 28-32 % S, 1-9 % SiO2 и примеси др. элементов. Концентрат подвергают окислительному обжигу при 570-600 °С в многоподовых печах или печах кипящего слоя. Продукт обжига - огарок содержит MoO3, загрязнённую примесями. Чистую MoO3, необходимую для производства металлического М., получают из огарка двумя путями: 1) возгонкой при 950-1100 °С; 2) химическим методом, который состоит в следующем: огарок выщелачивают аммиачной водой, переводя М. в раствор; из раствора молибдата аммония (после очистки его от примесей Cu, Fe) выделяют полимолибдаты аммония (главным образом парамолибдат 3(NH4)2O Ч 7MoO3Ч nH2O) методом нейтрализации или выпарки с последующей кристаллизацией; прокаливанием парамолибдата при 450-500 °С получают чистую MoO3, содержащую не более 0,05 % примесей.

Металлический М. получают (сначала в виде порошка) восстановлением MoO3 в токе сухого водорода. Процесс ведут в трубчатых печах в две стадии: первая - при 550-700 °С, вторая - при 900-1000 °С. Молибденовый порошок превращают в компактный металл методом порошковой металлургии или методом плавки. В первом случае получают сравнительно небольшие заготовки (сечением 2-9 см2 при длине 450-600 мм). Порошок М. прессуют в стальных пресс-формах под давлением 200-300 Мн/м2 (2-3 мс/см2). После предварительного спекания (при 1000-1200 °С) в атмосфере водорода заготовки (штабики) подвергают высокотемпературному спеканию при 2200-2400 °С. Спечённый штабик обрабатывают давлением (ковка, протяжка, прокатка). Более крупные спечённые заготовки (100-200 кг) получают при гидростатическом прессовании в эластичных оболочках. Заготовки в 500-2000 кг производят дуговой плавкой в печах с охлаждаемым медным тиглем и расходуемым электродом, которым служит пакет спечённых штабиков. Кроме того, используют электроннолучевую плавку М. Для производства ферромолибдена (сплав; 55-70 % Mo, остальное Fe), служащего для введения присадок М. в сталь, применяют восстановление обожжённого молибденитового концентрата (огарка) ферросилицием в присутствии железной руды и стальной стружки.

Применение. 70-80 % добываемого М. идёт на производство легированных сталей. Остальное количество применяется в форме чистого металла и сплавов на его основе, сплавов с цветными и редкими металлами, а также в виде химических соединений. Металлический М. - важнейший конструкционный материал в производстве электроосветительных ламп и электровакуумных приборов (радиолампы, генераторные лампы, рентгеновские трубки и др.); из М. изготовляют аноды, сетки, катоды, держатели нити накала в электролампах. Молибденовые проволока и лента широко используются в качестве нагревателей для высокотемпературных печей.

После освоения производства крупных заготовок М. стали применять (в чистом виде или с легирующими добавками др. металлов) в тех случаях, когда необходимо сохранение прочности при высоких температурах, например для изготовления деталей ракет и других летательных аппаратов. Для предохранения М. от окисления при высоких температурах используют покрытия деталей силицидом М., жаростойкими эмалями и другие способы защиты. М. применяют как конструкционный материал в энергетических ядерных реакторах, т. к. он имеет сравнительно малое сечение захвата тепловых нейтронов (2,6 барн). Важную роль М. играет в составе жаропрочных и кислотоустойчивых сплавов, где он сочетается главным образом с Ni, Со и Cr.

В технике используются некоторые соединения М. Так, MoS2 - смазочный материал для трущихся частей механизмов; дисилицид молибдена применяют при изготовлении нагревателей для высокотемпературных печей; Na2MoO4 - в производстве красок и лаков; окислы М. - катализаторы в химической и нефтяной промышленности.

А. Н. Зеликман

М. в организме растений, животных и человека постоянно присутствует как микроэлемент, участвующий преимущественно в азотном обмене. М. необходим для активности ряда окислительно-восстановительных ферментов (флавопротеидов), катализирующих восстановление нитратов и азотфиксацию у растений (много М. в клубеньках бобовых), а также реакции пуринового обмена у животных. В растениях М. стимулирует биосинтез нуклеиновых кислот и белков, повышает содержание хлорофилла и витаминов. При недостатке М. бобовые, овёс, томаты, салат и другие растения заболевают особым видом пятнистости, не плодоносят и погибают. Поэтому растворимые молибдаты в небольших дозах вводят в состав микроудобрений. Животные обычно не испытывают недостатка в М. Избыток же М. в корме жвачных животных (биогеохимические провинции с высоким содержанием М. известны в Кулундинской степи, на Алтае, Кавказе) приводит к хроническим молибденовым токсикозам, сопровождающимся поносом, истощением, нарушением обмена меди и фосфора. Токсическое действие М. снимается введением соединений меди.

Избыток М. в организме человека может вызвать нарушение обмена веществ, задержку роста костей, подагру и т. п.

Лит.: Зеликман А. Н., Молибден, М., 1970; Молибден. Сборник, пер. с англ., М., 1959; Биологическая роль молибдена, М., 1972.

И. Ф. Грибовская