Четверг, 4 Июль 2024, 00:23

Сайт: Система поддержки учебных курсов НИ РХТУ
Курс: Электронная библиотека (Электронная библиотека)
Глоссарий: Терминологический словарь

Л

Литейный чугун

Выплавляемый в доменной печи чугун, содержащий подавляющую часть углерода в виде свободного графита и имеющий в своём составе кремний до 3,75%; применяется для получения отливок в литейном производстве. Выплавляют коксовый, древесноугольный и специальный Л. ч.

В СССР чугун выпускают 6 марок от ЛКО до ЛК5 с содержанием углерода 3,5-4,5%, кремния 0,75-3,75%, которые по содержанию марганца делятся каждая на 3 группы, по содержанию серы - на 3 категории, по содержанию фосфора - на 4 класса. Древесноугольный чугун, выпускаемый в ограниченном количестве, содержит углерода 3,7-4,4%, кремния 1,25-2,75% и значительно меньше фосфора и серы по сравнению с коксовым чугуном. Для отливок особо высокого качества используют так называемый синтетический чугун, получаемый переплавом стальных отходов и собственного возврата и науглероживаемый графитсодержащими материалами.

Л. ч. поставляется в чушках и входит в состав шихтовых материалов, используемых в производстве отливок из серого, ковкого, отбелённого чугуна, в том числе легированного чугуна и модифицированного чугуна.

Литник

Прилив на отливке, представляющий собой кусок металла, затвердевшего в литниковой системе. После отделения от отливок Л. используют в шихте при переплавке металла.

Литниковая система

Совокупность каналов (элементов), через которые расплав из ковша или другого разливочного устройства подводится к рабочей полости литейной формы. Назначение Л. с. - обеспечение оптимальных условий и продолжительности заливки формы с целью получения отливки с чёткими гранями и контурами, предотвращение попадания неметаллических включений (при заливке из поворотного ковша), а при затвердевании сплава - питание отливки для предотвращения усадочных раковин. Элементы Л. с. в соответствии с их назначением разделяют на подводящие и питающие (в некоторых частных случаях такого разделения не существует).

К подводящим элементам Л. с. относятся: чаша, стояк, дроссель, шлакоуловитель (коллектор, литниковый ход) и питатель (см. рис. 1а). Чаша - приёмник расплава, для удобства заливки, задержания шлака и предотвращения засоса воздуха должна вмещать достаточный объём металла. Стояк - вертикальный (редко наклонный) канал, присоединённый к чаше. Дроссель - узкий канал (или несколько каналов), расположенный обычно в основании стояка, являющийся местным гидравлическим сопротивлением, регулирует скорость заливки и устраняет вакуум (разрежение) в стояке. Шлакоуловитель - канал, обычно вытянутого трапециевидного сечения, расположенный за дросселем, служит для подачи сплава к питателям и задержания неметаллических включений. Для более полного задержания шлака в Л. с. устраивают местные расширения в шлакоуловителе, применяют центробежные шлакоуловители, фильтровальные сетки (для отливок из чугуна - из огнеупорной стержневой или шамотной смеси, для отливок из цветных сплавов - из тонкой листовой стали, для всех сплавов с температурой заливки до 1350°С - из кремнезёмной ткани). Шлакоуловители не нужны при заливке форм из стопорного ковша (шлак остаётся в ковше) и при плотности неметаллических включений, близкой к плотности сплава (у некоторых цветных сплавов). В этих случаях канал, называемый коллектором, или литниковым ходом, только распределяет сплав. Питатель - присоединённый к шлакоуловителю канал, обычно прямоугольного сечения, через который сплав поступает в рабочую полость формы непосредственно или через прибыль.

Литниковые системы

Рис. 1 Литниковые системы: а, б - боковые; в - дождевая; г - сифонная; д - ярусная (этажная); е - щелевая; 1 - чаша (воронка); 2 - стояк; 3 - дроссель; 4 - шлакоуловитель; 5 - питатель; 6 - боковая прибыль; 7 - шейка.

Размеры подводящих элементов определяются в основном гидродинамическими факторами (конструкцией Л. с., напором, расходом и скоростью расплава).

К питающим элементам Л. с. относятся боковая прибыль и шейка (см. рис.,а). Боковая прибыль - компактный прилив на боковой поверхности отливки, предназначенный для её питания во время остывания и затвердевания сплава. Шейка - суженная часть прибыли, соединяющая сё с отливкой. Питающие элементы должны затвердевать медленнее отливки. Их размеры определяются в основном тепловыми факторами (теплофизическими свойствами сплава и формы), литейными свойствами сплава, массой, толщиной стенок, конфигурацией отливки и требованиями к ней (механические свойства, герметичность и т. д.).

При получении тонкостенных отливок из эвтектических сплавов (например, серого чугуна) короткого времени остывания питателей обычно оказывается достаточно для питания отливок. В этих случаях спец. питающие элементы не нужны и Л. с. состоит только из подводящих каналов (см. рис.,б,в,г,д). Если для питания требуется небольшой объём сплава, то система наряду с подводящими элементами имеет подводяще-питающие, например шлакоуловитель может одновременно служить прибылью, а питатель - шейкой (см. рис., е).

В зависимости от способа и места подвода Л. с. разделяют на боковые, верхние и дождевые, сифонные, ярусные (этажные) и щелевые. По способу формовки различают горизонтальные Л. с. с расположением питателя в горизонтальной плоскости разъёма и вертикальные, у которых питатель расположен в вертикальной плоскости разъёма или вне основной плоскости разъёма формы.

Лит.: Дубицкий Г. М., Литниковые системы, М. - Свердловск, 1962; Рабинович Б. В., Введение в литейную гидравлику, М., 1966; Basic principles of gating, L. - [a. o.], 1967; Leremplissage des ernpreintes de moules en sable, P., 1966; Hoizmьller A., Kucharcik L., Atlas zur Anschnitt- und Speisertechnik fьr Gubeisen, Dьsseldorf, 1969.

Б. В. Рабинович

Литьё

Технологический процесс изготовления отливок, заключающийся в заполнении форм расплавленным материалом (литейным сплавом, пластмассой, некоторыми горными породами) и дальнейшей обработке полученных изделий (см. Литейное производство, Каменное литьё). Л. неправильно называют также продукцию литейного производства.

Литьё в кокиль

Кокильное литьё, способ получения фасонных отливок в металлических формах - кокилях. В отличие от других способов литья в металлические формы (литьё под давлением, центробежное литьё и др.), при Л. в к. заполнение формы жидким сплавом и его затвердевание происходят без какого-либо внешнего воздействия на жидкий металл, а лишь под действием силы тяжести. Основные операции и процессы: очистка кокиля от старой облицовки, прогрев его до 200-300°С, покрытие рабочей полости новым слоем облицовки, простановка стержней, закрывание частей кокиля, заливка металла, охлаждение и удаление полученной отливки. Процесс кристаллизации сплава при Л. в к. ускоряется, что способствует получению отливок с плотным и мелкозернистым строением, а следовательно, с хорошей герметичностью и высокими физико-механическими свойствами. Однако отливки из чугуна из-за образующихся на поверхности карбидов требуют последующего отжига. При многократном использовании кокиль коробится и размеры отливок в направлениях, перпендикулярных плоскости разъёма, увеличиваются.

В кокилях получают отливки из чугуна, стали, алюминиевых, магниевых и др. сплавов. Особенно эффективно применение кокильного литья при изготовлении отливок из алюминиевых и магниевых сплавов. Эти сплавы имеют относительно невысокую температуру плавления, поэтому один кокиль можно использовать до 10000 раз (с простановкой металлических стержней). До 45% всех отливок из этих сплавов получают в кокилях. При Л. в к. расширяется диапазон скоростей охлаждения сплавов и образования различных структур. Сталь имеет относительно высокую температуру плавления, стойкость кокилей при получении стальных отливок резко снижается, большинство поверхностей образуют стержни, поэтому метод кокильного литья для стали находит меньшее применение, чем для цветных сплавов.

Лит.: Кокильное литье, М., 1967; Петриченко А. М., Теория и технология кокильного литья, [К., 1967].

Н. П. Дубинин

Литьё в оболочковые формы

Способ получения фасонных отливок из металлических сплавов в формах, состоящих из смеси песчаных зёрен (обычно кварцевых) и синтетического порошка (обычно фенолоформальдегидной смолы и пульвер-бакелита). Предпочтительно применение плакированных песчаных зёрен (покрытых слоем синтетической смолы).

Оболочковую форму получают одним из двух методов. Смесь насыпают на металлическую модель, нагретую до 300°С, выдерживают в течение нескольких десятков сек до образования тонкого упрочнённого слоя, избыток смеси удаляют. При использовании плакированной смеси её вдувают в зазор между нагретой моделью и наружной контурной плитой. В обоих случаях необходимо доупрочнение оболочки в печи (при температуре до 400°С) на модели. Полученные оболочковые полуформы скрепляют, и в них заливают жидкий сплав. Во избежание деформации форм под действием заливаемого сплава перед заливкой их помещают в металлический кожух, а пространство между его стенками и формой заполняют металлической дробью, наличие которой воздействует также на температурный режим охлаждающейся отливки.

Этим способом изготавливают различные отливки массой до 25 кг. Преимуществами способа являются значительные повышение производительности по сравнению с изготовлением отливок литьём в песчаные формы, управление тепловым режимом охлаждения отливки и возможность механизировать процесс.

П. П. Берг

Литье в песчаные формы

Способ получения отливок в формах, изготовленных из песчано-глинистых материалов и используемых для получения одной отливки.

Л. в п.ф. является самым распространенным способом литья. В настоящее время до 75% отливок получают в песчаных формах; порядка 20% - в металлических формах (кокилях) и 5% - другими способами литья (под давлением, центробежное, по выплавляемым моделям и др.)

Литьё в самотвердеющие формы

Процесс получения отливок, при котором используют литейные формы и стержни, изготовленные из смесей, затвердевающих на воздухе и не требующих сушки или дополнительной обработки внешними реагентами.

Самотвердеющие смеси (СС) состоят из наполнителей, связующих материалов, отвердителей, иногда в их состав входит вода. В некоторых смесях один и тот же материал (например, цемент) выполняет роль связующего и обеспечивает самозатвердевание. Применяются неорганические и органические связующие материалы. Используют смеси 3 типов: пластичные - ПСС, жидкие - ЖСС и сыпучие - ССС (термины условные). Стержни и формы из ПСС при изготовлении необходимо уплотнять, ЖСС наливают в стержневые ящики и на модели, ССС почти не требуют уплотнения.

В 30-х гг. 20 в. получили распространение ПСС с цементом и кварцевым песком (применяют в литейном производстве, преимущественно в странах Западной Европы). Формы и стержни из них затвердевают на воздухе в течение 24-72 ч. В начале 60-х гг. в СССР были разработаны принципиально новые смеси - ЖСС, состоящие из наполнителей, неорганических или органических связующих материалов, отвердителей и поверхностно-активных веществ (ПАВ). Смеси без ПАВ или с очень малым содержанием ПАВ используются в качестве ПСС и ССС. Большое распространение в СССР и ряде зарубежных стран получили ЖСС и ПСС, включающие в себя жидкое стекло. В них в качестве отвердитсля применяют различные продукты, в частности материалы, в которые входит двухкальциевый силикат (например, шлак феррохромового производства). Длительность затвердевания стержней и форм из этих смесей на воздухе 20-60 мин. Для улучшения выбиваемости СС, содержащих неорганический связующий материал (например, жидкое стекло), иногда вводят небольшое количество специальных (преимущественно органических) добавок.

Во всех промышленно развитых странах находят применение смеси с органическими связующими добавками, например, смеси, в состав которых входят искусственные смолы - карбамидно-фурановые, фенолофурановые и фенольные. В составы смесей при их изготовлении вводят отвердители: ортофосфорную кислоту, паратолуолсульфокислоту, бензолсульфокислоту и др. Из этих смесей изготовляют главным образом стержни, которые легко выбиваются из отливок. Время затвердевания стержней на воздухе от 10 до 30 мин. Все типы СС применяют для изготовления форм и стержней преимущественно в индивидуальном, мелкосерийном и крупносерийном производстве для получения отливок практически любой формы и размеров из стали, чугуна и нежелезных сплавов. Разрабатываются смеси с очень коротким циклом затвердевания, соответствующим требованиям массового производства.

А. М. Лясс

Литье всасыванием

Способ получения отливок в тонкостенных водоохлаждаемых металлических литейных формах (кристаллизаторах), заполняемых при вакуумном всасывании жидкого сплава.

При Л. в. во внутренней полости кристаллизатора создается разрежение, благодаря которому сплав всасывается в форму на определенную высоту. В форме металл затвердевает, образуя отливку, конфигурация которой соответствует конфигурации внутренней полости кристаллизатора. Особенности способа: спокойное заполнение формы металлом даже при изготовлении тонкостенных отливок и отсутствие потерь металла на литниковую систему. Малая производительность Л. в. ограничивает его применение.

Литьё по выплавляемым моделям

Способ получения фасонных отливок из металлических сплавов в неразъёмной, горячей и негазотворной оболочковой форме, рабочая полость которой образована удалением литейной модели выжиганием, выплавлением или растворением.

При этом способе литья в пресс-формы (обычно металлические) запрессовывают модельный состав, который после затвердевания образует модели деталей и литниковой системы. Модельный состав удаляют, чаще всего выплавляя его в горячей воде (отсюда и название способа - литьё по выплавляемыммоделям). Полученные оболочки прокаливают при температуре 800-1000°С и заливают металлом.

Способ обеспечивает получение сложных по форме отливок массой от нескольких г до десятков кг, со стенками толщиной от 0,5 мм и более, с поверхностью, соответствующей 4-6-му классам чистоты, и с высокой точностью размеров по сравнению с др. способами литья. Указанные особенности послужили причиной прежних названий способа - точное, или прецизионное литьё. Размеры отливок, полученных Л. по в. м., максимально приближены к размерам готовой детали, вследствие чего за счёт сокращения механической обработки снижается стоимость готового изделия.

Методом Л. по в. м. изготовляют художественные отливки, ювелирные изделия, зубные протезы и др. изделия. Этот способ литья, являясь одним из древних, получил широкое промышленное применение в результате совершенствования технологии литейного производства и изучения свойств кремнийорганических соединений.

В СССР Л. по в. м. сосредоточено в больших высокомеханизированных цехах, которые производят до 2,5 тыс. т готовых отливок в год. Достижением советской промышленности является создание комплексно-автоматизированного производства Л. по в. м.

В. Н. Иванов