Воскресенье, 19 Май 2024, 00:09

Сайт: Система поддержки учебных курсов НИ РХТУ
Курс: Электронная библиотека (Электронная библиотека)
Глоссарий: Терминологический словарь

П

Пирометры

От греч. pэr - огонь и ...метр. Приборы для измерения температуры непрозрачных тел по их излучению в оптической диапазоне спектра. Тело, температуру которого определяют при помощи П., должно находиться в тепловом равновесии и обладать коэффициентом поглощения, близким к единице. Распространены яркостные, цветовые и радиационные П. Основным типом является яркостный П., обеспечивающий наибольшую точность измерений температуры в диапазоне 103-104 К. В простейшем визуальном яркостном П. с исчезающей нитью (см.рис.1) объектив фокусирует изображение исследуемого тела на плоскость, в которой расположена нить (ленточка) эталонной лампы накаливания. Через окуляр и красный фильтр, позволяющий выделять узкую спектральную область около длины волны lэ = 0,65 мкм, нить рассматривают на фоне изображения тела и, изменяя ток накала нити, добиваются выравнивания яркостей нити и тела (нить в этот момент становится неразличимой). Шкала прибора, регистрирующего ток накала, прокалибрована обычно в °С или К, и в момент выравнивания яркостей прибор показывает так называемую яркостную температуру (Tb) тела. Истинная температура тела Т определяется на основе законов теплового излучения Кирхгофа и Планка по формуле:

Т = TbC2/(C2 + l эТь Inal,T), (1)

где C2 = 0,014388 м ЧК, al, T - коэффициент поглощения тела, l э - эффективная длина волны П.

Точность результата в первую очередь зависит от строгости выполнения условий пирометрия, измерений (al, T» 1 и др.). В связи с этим наблюдаемой поверхности придают форму полости. Основная инструментальная погрешность обусловлена нестабильностью температурной лампы. Заметную погрешность могут вносить также индивидуальные особенности глаза наблюдателя. У фотоэлектрических П. (см.рис.2) этот вид погрешности отсутствует. Погрешность образцовых лабораторных фотоэлектрических П. не превышает сотых долей градуса при Т = 1000°С. Промышленные серийные фотоэлектрические П. обладают на порядок большей погрешностью, визуальные - ещё на порядок большей. Образцовые яркостные П. приняты в качестве основных интерполяционных приборов, определяющих Международную практическую температурную шкалу (МПТШ-68) при температурах выше точки затвердевания золота (1064,43 °С).

Для измерения температуры тел, у которых a » const в оптическом диапазоне спектра, применяют цветовые П. Этими П. определяют отношение яркостей обычно в синей и красной областях спектра b1(l1, T)/b2(l2, T) (например, для длин волн l1 = 0,48 мкм и l2 = 0,60 мкм). Шкала прибора прокалибрована в °С и показывает цветовую температуру Tc. Истинная температура Т тела определяется по формуле

Формула 1.(2)

Цветовые П. менее точны, менее чувствительны и более сложны, чем яркостные; применяются в том же диапазоне температур.

Наиболее чувствительны (но и наименее точны) радиационные П., или П. суммарного излучения, регистрирующие полное излучение тела. Действие их основано на Стефана -Больцмана законе излучения и Кирхгофа законе излучения. Объектив радиационных П. фокусирует наблюдаемое излучение на приёмник (обычно термостолбик или болометр), сигнал которого регистрируется прибором, прокалиброванным по излучению абсолютно чёрного тела и показывающим радиационную температуру Tr. Истинная температура определяется по формуле

Формула 2 (3)

где aT - полный коэффициент поглощения тела. Радиационными П. можно измерять температуру, начиная с 200°С. В промышленности П. широко применяют в системах контроля и управления температурными режимами разнообразных технологических процессов.

Принципиальная схема визуального яркостного пирометра с исчезающей нитью

Рис. 1. Принципиальная схема визуального яркостного пирометра с исчезающей нитью: 1 - источник излучения; 2 - оптическая система (телескоп пирометра); 3 - эталонная лампа накаливания; 4 - фильтр с узкой полосой пропускания; 5 - объектив; 6 - реостат, которым регулируют ток накала; 7 - измерительный прибор (миллиамперметр).

Оптическая система автоматического фотоэлектрического пирометра

Рис. 2. Оптическая система автоматического фотоэлектрического пирометра: 1 - источник излучения; 2 - линзы оптической системы; 3 - модулятор, попеременно пропускающий излучение источника и эталонной лампы 4 к фотоэлементу 7; 5 - фильтр с узкой частотной полосой пропускания; 6 - погнутая линза. Фотоэлемент поочерёдно освещается то источником, то лампой. При неравенстве создаваемых ими освещённостей в цепи фотоэлемента возникает переменная составляющая фототока, амплитуда которой пропорциональна разности освещённостей. При измерениях ток накала лампы регулируют так, чтобы переменная составляющая фототока стала равна нулю.

Лит.: Рибо Г., Оптическая пирометрия, пер. с франц., М. - Л., 1934; Гордов А. Н., Основы пирометрии, 2 изд., М., 1971.

В. Н. Колесников

Пистолет сварочный

Переносное приспособление для полуавтоматической сварки деталей в изделиях, соединение которых на стационарных установках невозможно или затруднительно. П.с. используют в производстве автомобилей, ж.-д. вагонов, с.-х. машин и т.п., а также при работе в сложных условиях (например, космических объектов на орбите). П.с. осуществляют точечную контактную сварку, дуговую сварку (в т. ч. под флюсом и в защитных газах), электроннолучевую сварку, а также приварку различных деталей и элементов машин, механизмов, конструкций (валиков, крючьев, шпилек и др.). Существует множество конструктивных разновидностей П.с. в зависимости от их назначения (см. рис.). П.с. для точечной контактной электросварки представляет собой скобу, на которой размещены электроды и пневматический цилиндр для сжатия электродов; в П.с. для дуговой электросварки разряд возникает между неподвижным электродом и изделием; П.с. для дуговой сварки под флюсом оснащен устройством для подачи флюса и т.д.

Сварочный пистолет для приварки шпилек

Рис. 1 Сварочный пистолет для приварки шпилек: 1 - привариваемая шпилька (является одним из электродов); 2 - держатель; 3 -электромагнитное устройство (для зажигания дуги, отдёргивания шпильки от изделия); 4 - рукоятка; 5 - электропровод цепи управления пистолетом; 6 - электропровод от трансформатора.

Питатель

Устройство для равномерной и регулируемой подачи насыпных и штучных грузов из бункеров, загрузочных лотков, магазинов и др. загрузочных устройств к транспортирующим и перерабатывающим машинам (станкам, мельницам, грохотам и т.п.). П. разделяются на 2 группы. П. первой группы по устройству аналогичны некоторым типам конвейеров (рис.1 а - д), но, в отличие от них, обладают небольшой длиной и повышенной мощностью двигателя привода. К ним относятся ленточные, пластинчатые, винтовые, качающиеся и вибрационные П.

Схемы питателей

Рис.1 Схемы питателей: а - ленточный; б - пластинчатый; в - винтовой; г - качающийся; д - вибрационный; е - барабанный; ж - дисковый; з - цепной.

Ко второй группе относятся П., не имеющие прототипов среди конвейеров (рис. 1, е - з). Наиболее простые, барабанные П., применяемые для подачи хорошо сыпучих, зернистых и мелко-кусковых грузов, имеют гладкую внутреннюю поверхность барабана, для крупнокусковых - ребристую поверхность. Дисковые (тарельчатые) П., применяемые для сыпучих грузов, снабжены загрузочным устройством, из которого груз попадает на вращающийся вокруг вертикальной оси диск и сбрасывается с него неподвижно закрепленным скребком. Скорость вращения диска выбирается такой, чтобы сбрасывание груза не происходило под действием центробежной силы. Цепные П. для крупнокусковых грузов имеют так называемый цепной занавес, перекрывающий выпускное отверстие бункера. При вращении приводного барабана цепи прижимают к лотку слой груза, регулируя скорость его скольжения. Пневматические винтовые П. (каньон-насосы) применяют для подачи сыпучих пылящих материалов; от обычных винтовых П. отличаются тем, что на выходе материал захватывается и транспортируется струей воздуха.

Производительность всех П. регулируется изменением скорости их рабочего органа и размером выпускной щели бункера, а в вибрационных П. дополнительно изменением частоты и амплитуды колебаний.

Лит.: Спиваковский А. О., Дьячков В. К., Транспортирующие машины, 2 изд.. М., 1968; Александров М. П., Подъемно-транспортные машины, 4 изд., М., 1972.

В. С. Киреев

Плавильная печь

Печь для превращения к.-л. материала в жидкое состояние нагревом его до температуры, превышающей температуру плавления. П.п. используют в производстве чугуна, стали, цветных металлов, в литейном и стекл. производствах, хим. пром-ти. П.п. работают на тв., жидком и газообразном топливах, электрич. энергии. В некоторых П.п. используют солнечную энергию

Плавка

Процесс переработки материалов (главным образом металлов) в плавильных печах с получением конечного продукта в жидком виде.

В металлургии применяется для извлечения металла из руды (доменная П.), передела твёрдой или жидкой металлической шихты (мартеновская П., электроплавка, кислородно-конвертерная П., рафинирование ферросплавов и цветных металлов), получения сплавов, расплавления твёрдого металла для отливки слитков или фасонного литья и др. целей. П. также именуется разовый цикл процесса П., а также полученный в результате этого продукт.

Плавление

Переход вещества из кристаллического (твёрдого) состояния в жидкое; происходит с поглощением теплоты (фазовый переход I рода). Главными характеристиками П. чистых веществ являются температура плавления (Тпл) и теплота, которая необходима для осуществления процесса П.(теплота плавления Qпл).

Температура П. зависит от внешнего давления р; на диаграмме состояния чистого вещества эта зависимость изображается кривой плавления (кривой сосуществования твёрдой и жидкой фаз, AD или AD' на рис.1). П. сплавов и твёрдых растворов происходит, как правило, в интервале температур (исключение составляют эвтектики с постоянной Тпл). Зависимость температуры начала и окончания П. сплава от его состава при данном давлении изображается на диаграммах состояния специальными линиями (кривые ликвидуса и солидуса, см. Двойные системы). У ряда высокомолекулярных соединений (например, у веществ, способных образовывать жидкие кристаллы) переход из твёрдого кристаллического состояния в изотропное жидкое происходит постадийно (в некотором температурном интервале), каждая стадия характеризует определённый этап разрушения кристаллической структуры.

Диаграмма состояния чистого вещества

Рис. 1. Диаграмма состояния чистого вещества. Линии AD и AD' - кривые плавления, по линии AD' плавятся вещества с аномальным изменением объёма при плавлении.

Наличие определённой температуры П.- важный признак правильного кристаллического строения твёрдых тел. По этому признаку их легко отличить от аморфных твёрдых тел, которые не имеют фиксированной Тпл. Аморфные твёрдые тела переходят в жидкое состояние постепенно, размягчаясь при повышении температуры (см. Аморфное состояние).

Самую высокую температуру П. среди чистых металлов имеет вольфрам (3410 °С), самую низкую - ртуть (-38,9°С). К особо тугоплавким соединениям относятся: TiN (3200°С), HfN (3580°С), ZrC (3805°С), TaC (4070°С), HfC (4160°С) и др. Как правило, для веществ с высокой Тпл характерны более высокие значения Qпл. Примеси, присутствующие в кристаллических веществах, снижают их Тпл. Этим пользуются на практике для получения сплавов с низкой Тпл (см., например, Вуда сплав с Тпл = 68°С) и охлаждающих смесей.

П. начинается при достижении кристаллическим веществом Тпл. С начала П. до его завершения температура вещества остаётся постоянной и равной Тпл, несмотря на сообщение веществу теплоты (рис. 2). Нагреть кристалл до Т > Тпл в обычных условиях не удаётся (см. Перегрев), тогда как при кристаллизации сравнительно легко достигается значительное переохлаждение расплава.

Остановка температуры при плавлении кристаллического тела

Рис. 2. Остановка температуры при плавлении кристаллического тела. По оси абсцисс отложено время t, пропорциональное равномерно подводимому к телу количеству теплоты.

Характер зависимости Тпл от давления р определяется направлением объёмных изменений (DVпл) при П. (см. Клапейрона -Клаузиуса уравнение). В большинстве случаев П. вещества сопровождается увеличением их объёма (обычно на несколько %). Если это имеет место, то возрастание давления приводит к повышению Тпл (рис. 3). Однако у некоторых веществ воды, ряда металлов и металлидов, см. рис. 1) при П. происходит уменьшение объёма. Температура П. этих веществ при увеличении давления снижается.

Изменение температуры плавления

Рис. 3. Изменение температуры плавления Тпл (°С) щелочных металлов с увеличением давления p (кбар). Кривая плавления Cs указывает на существование у него при высоких давлениях двух полиморфных превращений (а и в).

П. сопровождается изменением физических свойств вещества: увеличением энтропии, что отражает разупорядочение кристаллической структуры вещества; ростом теплоёмкости, электрического сопротивления [исключение составляют некоторые полуметаллы (Bi, Sb) и полупроводники (Ge), в жидком состоянии обладающие более высокой электропроводностью]. Практически до нуля падает при П. сопротивление сдвигу (в расплаве не могут распространяться поперечные упругие волны), уменьшается скорость распространения звука (продольных волн) и т.д.

Согласно молекулярно-кинетическим представлениям, П. осуществляется следующим образом. При подведении к кристаллическому телу теплоты увеличивается энергия колебаний (амплитуда колебаний) его атомов, что приводит к повышению температуры тела и способствует образованию в кристалле различного рода дефектов (незаполненных узлов кристаллической решётки - вакансий; нарушений периодичности решётки атомами, внедрившимися между её узлами, и др., см. Дефекты в кристаллах). В молекулярных кристаллах может происходить частичное разупорядочение взаимной ориентации осей молекул, если молекулы не обладают сферической формой. Постепенный рост числа дефектов и их объединение характеризуют стадию предплавления. С достижением Тпл в кристалле создаётся критическая концентрация дефектов, начинается П.- кристаллическая решётка распадается на легкоподвижные субмикроскопические области. Подводимая при П. теплота идёт не на нагрев тела, а на разрыв межатомных связей и разрушение дальнего порядка в кристаллах. В самих же субмикроскопических областях ближний порядок в расположении атомов при П. существенно не меняется (координационное число расплава при Тпл в большинстве случаев остаётся тем же, что и у кристалла). Этим объясняются меньшие значения теплот плавления Qпл по сравнению с теплотами парообразования и сравнительно небольшое изменение ряда физических свойств веществ при их П.

Процесс П. играет важную роль в природе (П. снега и льда на поверхности Земли, П. минералов в её недрах и т.д.) и в технике (производство металлов и сплавов, литьё в формы и др.).

Лит.: Френкель Я. И., Кинетическая теория жидкостей, Собр. избр. трудов, т. 3, М. -Л., 1959; Данилов В. И., Строение и кристаллизация жидкости, К., 1956; Глазов В. М., Чижевская С. Н., Глаголева Н. Н., Жидкие полупроводники, М., 1967; Уббелоде А., Плавление и кристаллическая структура, пер. с англ., М., 1969; Любов Б. Я., Теория кристаллизации в больших объемах, М. (в печати).

Б. Я. Любов

Плавящийся электрод для дуговой сварки

Металлический электрод, включаемый в цепь сварочного тока для подвода его к сварочной дуге, расплавляющийся при сварке и служащий присадочным материалом.

Электроды для РДС представляют собой проволочные стержни с нанесенным покрытием. Стержень электрода изготовляют из специальной сварочной проволоки из стали повышенного качества. ГОСТ 2246-70 предусматривает 56 марок стальной сварочной проволоки диаметром 0,3 – 12 мм. Все марки сварочной проволоки разделяют на 3 группы: углеродистую, легированную и высоколегированную.

По назначению стальные электроды по ГОСТ 9466 подразделяют на 4 класса:

• для сварки углеродистых и легированных конструкционных сталей (ГОСТ 9467);

• для сварки теплоустойчивых сталей (ГОСТ 9467);

• для сварки высоколегированных сталей (ГОСТ 10052);

• для наплавки поверхностных слоев с особыми свойствами (ГОСТ 1051).

Внутри каждого класса электроды делятся на типы (всего 73 типа).

Условное обозначение электродов для сварки конструкционных сталей состоит из обозначения марки электрода, типа электрода, диаметра стержня, типа покрытия, номера ГОСТа.

Пример: УОНИ – 13/45 – Э42А – 4,0 – Ф ГОСТ 9467-75

Расшифровка:

• УОНИ – 13/45 – марка электрода;

• Э42А - тип электрода (Э – электрод для дуговой сварки; 42 – гарантированный предел прочности металла шва в кгс/мм2; А – гарантируется получение повышенных пла-стических свойств металла шва);

• 4,0 – диаметр электродного стержня в мм;

• Ф – тип покрытия (фтористокальциевый).

Марка электрода (УОНИ – 13/45, АН-1, АНО-1, 03С-6 и др.) характеризует также его технологические свойства: род и полярность тока, возможность сварки в различных пространственных положениях, коэффициент наплавки и др. (оговорены в ГОСТе и спра-вочной литературе по сварке).

Б.П. Сафонов

С

Сварка в защитных газах

Дуговая сварка, при которой в зону соединения подаются защитные газы (см. Сварочные материалы) для предотвращения воздействия воздуха на металл шва.

Газовая защита способствует также устойчивому горению дуги, улучшает условия формирования шва, повышает его качество.

Сварка под флюсом

Дуговая сварка с применением для защиты сварочной ванны от воздействия воздуха и для улучшения формирования сварного шва специального сварочного материала - флюса. Этот способ обеспечивает постоянство режима, позволяет увеличить сварочный ток до 1000-2000 а, получить большую глубину проплавления материала и высокое качество сварного шва по всей длине.

Сварочный трактор

Переносный самоходный автомат для дуговой электросварки, который перемещается вдоль свариваемых кромок по поверхности изделия или по лёгкому переносному рельсовому пути. Головка трактора (см. рис.) имеет механизм подачи электродной проволоки, которая проходит через мундштук к месту сварки. Головка установлена на ходовой тележке, на которой расположены также катушка с проволокой и пульт управления. С. т. входит в состав поста для автоматической сварки, который имеет также источник питания сварочным током, аппаратуру контроля, приспособления для осуществления сварки.

 

Сварочный трактор

 

Сварочный трактор: 1 - ходовая тележка; 2 - катушка; 3 - электродная проволока; 4 - пульт управления; 5 - головка.