Четверг, 4 Июль 2024, 02:26

Сайт: Система поддержки учебных курсов НИ РХТУ
Курс: Электронная библиотека (Электронная библиотека)
Глоссарий: Терминологический словарь

Диэлектрики

Англ. dielectrie, от греч. diе - через, сквозь и англ. еlectrie - электрический.

Вещества, практически не проводящие электрический ток. К Д. относятся электроизоляционные материалы. Д. бывают твердыми, жидкими и газообразными.

Свойствами Д. обладают и некоторые полупроводники, особенно в быстро меняющихся электрических полях.

Термин «Д.» введён М. Фарадеем для обозначения веществ, через которые проникают электрические поля. В любом веществе, помещённом в электрическом поле, составляющие его электрические заряды (электроны, атомные ядра) испытывают силы со стороны этого поля. В результате часть зарядов направленно перемещается, образуя электрический ток. Остальные же заряды перераспределяются так, что «центры тяжести» положительных и отрицательных зарядов смещаются друг относительно друга. В последнем случае говорят о поляризации вещества. В зависимости от того, какой из этих двух процессов - электропроводность или поляризация - преобладает, принято деление веществ на изоляторы (Д.) и проводники (металлы, электролиты, плазма). Электропроводность Д. по сравнению с металлами очень мала. Их удельное сопротивление r порядка 108-1017 ом·см, а у металлов r ~ 10-6 - 10-4 ом·см. Существует и промежуточный класс - полупроводники, свойства которых определяются процессами как электропроводности, так и поляризации.

Количественное различие в электропроводности твёрдых Д. и металлов классическая физика пыталась объяснить тем, что в металлах есть свободные электроны, а в Д. все электроны связаны, т. е. принадлежат отдельным атомам, и электрическое поле не отрывает, а лишь слегка смещает их. Однако такое объяснение неточно. Как показывает современная квантовомеханическая теория, твёрдое тело представляет собой как бы гигантскую «молекулу», где каждый электрон принадлежит всему кристаллу в целом. Это в одинаковой степени справедливо и для Д., и для металлов. Причиной различного поведения электронов в металле и в Д. является различный характер распределения электронов по уровням энергии.

Энергия электронов в твёрдом теле не может иметь произвольного значения. Области энергий, которыми электрон может обладать (разрешённые зоны), чередуются с интервалами энергий, которые электрон не может принимать (запрещённые зоны). Т. к., с одной стороны, электроны стремятся занять уровни с наименьшей энергией, а с др. стороны, в одном состоянии может находиться только один электрон, то электроны заполняют энергетические уровни от нулевого до некоторого максимального. В Д. верхний заполненный электронами энергетический уровень совпадает с верхней границей одной из разрешённых зон (см. рис.1). В металлах же верхний заполненный электронами энергетический уровень лежит внутри разрешённой зоны (см. Твёрдое тело).

Уровни энергии электронов твёрдого тела группируются в разрешённые зоны (валентная зона и зона проводимости), разделённые запрещёнными зонами

Рис. 1 Уровни энергии электронов твёрдого тела группируются в разрешённые зоны (валентная зона и зона проводимости), разделённые запрещёнными зонами

Для того чтобы в твёрдом теле под действием электрического поля возник электрический ток (направленное движение электронов), необходимо, чтобы часть электронов могла увеличивать свою энергию под действием поля, т. е. переходить с нижних энергетических уровней на более высокие. В металле такой переход возможен, т.к. к заполненным уровням непосредственно примыкают свободные. В Д. же ближайшие свободные уровни отделены от заполненных запрещённой зоной, которую электроны под действием обычных не слишком сильных электрических полей преодолеть не могут. В Д. действие электрического поля сводится к перераспределению электронной плотности, которое приводит к поляризации Д. Распределение электронов по уровням энергии в полупроводниках и Д. сходно. Полупроводник отличается от Д. лишь более узкой запрещённой зоной. Поэтому при низких температурах свойства полупроводников и Д. близки, а при повышении температуры электропроводность полупроводников возрастает и становится заметной. Резкой грани между Д. и полупроводниками провести нельзя. Вещества с шириной запрещённой зоны DE < 2-3 эв относят к полупроводникам, а с DE > 2-3 эв - к Д.

Выше шла речь о твёрдых Д. Однако Д. могут быть также жидкости и газы. В обычных условиях все газы состоят в основном из нейтральных атомов и молекул и поэтому не проводят электрического тока, т. е. являются Д. С повышением температуры атомы и молекулы ионизируются и газ постепенно превращается в плазму, хорошо проводящую электрический ток. Ниже речь будет идти о твёрдых Д.

Поляризация Д. Механизмы поляризации Д. могут быть различными. Они зависят от характера химической связи, т. е. распределения электронных плотностей в Д. Например, в ионных кристаллах (каменная соль NaCl и др.), где электроны распределены так, что можно выделить отдельные ионы, поляризация является результатом сдвига ионов друг относительно друга (ионная поляризация, см. рис.2,а), а также деформации электронных оболочек отдельных ионов (электронная поляризация). Иными словами, поляризация в этом случае является суммой ионной и электронной поляризаций. В кристаллах с ковалентной связью (например, в алмазе), где электронные плотности равномерно распределены между атомами, поляризация обусловлена главным образом смещением электронов, осуществляющих химическую связь (см.рис.2,б). В полярных Д. (например, твёрдый сероводород) группы атомов - молекулы или радикалы представляют собой электрические диполи, которые в отсутствии электрического поля ориентированы хаотически, а под действием поля эти диполи ориентируются вдоль него (см. рис.2,в). Такая ориентационная (дипольная) поляризация типична для полярных жидкостей и газов. Сходный механизм поляризации связан с перескоком под действием электрического поля отдельных ионов из одних возможных положений равновесия в решётке в другие. Особенно часто такой механизм поляризации наблюдается в веществах с водородной связью (например, у льда), где ионы водорода имеют несколько положений равновесия.

Поляризация диэлектриков в поле Е

Рис. 2 Поляризация диэлектриков в поле Е: а - ионная и электронная поляризации ионных кристаллов; б - электронная поляризация ковалентных кристаллов; в - ориентационная поляризация полярных диэлектриков

Поляризацию Д. характеризуют вектором поляризации P, который представляет собой дипольный момент единицы объёма Д. Дипольный момент нейтральной в целом системы зарядов есть вектор, равный произведению расстояния между центрами тяжести положительных и отрицательных зарядов на величину заряда одного знака. Направлен этот вектор от центра тяжести отрицательных к центру тяжести положительных зарядов. Вектор P зависит от напряжённости электрического поля Е. Поскольку сила, действующая на заряд, пропорциональна Е, то, естественно, что при малых полях величина Р пропорциональна Е. Коэффициент пропорциональности c в соотношении P = cЕ называется диэлектрической восприимчивостью Д. Часто оказывается удобным вместо вектора P пользоваться вектором электрической индукции

D = Е + 4pP.

Коэффициент пропорциональности e в соотношении D = eЕ называется диэлектрической проницаемостью. Ясно, что

e = 1 + 4pc.

В вакууме c = 0 и e = 1 (в системе единиц СГСЕ). Значение e (или c) является основной характеристикой Д.

В анизотропных Д. (например, в некубических кристаллах) направление вектора поляризации P определяется не только направлением поля Е, но также выделенными направлениями среды, например осями симметрии кристалла. Поэтому вектор P будет составлять различные углы с вектором Е в зависимости от ориентации Е по отношению к осям симметрии. В результате вектор D будет определяться через вектор E с помощью не одной величины e, а несколькими величинами (в общем случае - шестью), образующими тензор диэлектрической проницаемости.

Д. в переменном поле. Если электрическое поле Е изменяется во времени, то величина поляризации в заданный момент времени t не определяется значением поля Е в тот же момент времени t. Поляризация Д. не успевает следовать за вызывающим её электрическим полем, т.к. смещения зарядов не могут происходить мгновенно (см. рис.3).

Две характерные зависимости поляризации диэлектрика Р от времени t

Рис. 3 а, б. Две характерные зависимости поляризации диэлектрика Р от времени t. Постоянное электрическое поле Е включается в момент времени t = 0.

Т. к. любое переменное поле можно представить в виде совокупности полей, меняющихся по гармоническому закону, то достаточно изучить поведение Д. в поле Е = Е0ґ cos wt, где w - частота переменного поля. Под действием такого поля величины D и P будут колебаться также гармонически с той же частотой w. Однако между колебаниями D и Е будет существовать разность фаз, что вызвано отставанием поляризации P от поля Е.

Гармонический закон можно представить в комплексном виде: Е = E0eiwt . Тогда D = D0eiwt, причём амплитуды колебаний D и Е связаны соотношением: D0 = e (w) E0. Диэлектрическая проницаемость e (w) в этом случае является комплексной величиной: e(w) = e1 + ie2, и характеризуется двумя величинами e1 и e2, зависящими от частоты w переменного поля. Абсолютная величина

Формула

определяет амплитуду колебания D, а отношение (e2/e1) = tg d определяет разность фаз d между колебаниями D и Е. Величина d называется углом диэлектрических потерь. Это название связано с тем, что наличие разности фаз d приводит к поглощению энергии электрического поля в Д. Действительно, работа, совершаемая полем Е в единице объёма Д., выражается интегралом:

Формула

Взятый за один период колебания, этот интеграл обращается в ноль, если P и Е колеблются синфазно (d = 0) или в противофазе (d = p). В остальных случаях интеграл отличен от нуля. Доля энергии, теряемой за один период, равна e2. В постоянном электрическом поле (w = 0) e2 = 0, a e1 совпадает с e.

В переменных электрических полях очень высоких частот (например, электромагнитные волны оптического диапазона) свойства Д. принято характеризовать преломления показателем n и поглощения показателем k (вместо e1 и e2). Коэффициент преломления n равен отношению скоростей распространения электромагнитных волн в Д. и в вакууме. Коэффициент поглощения k характеризует затухание электромагнитных волн в Д. Величины n, k и e1, e2 связаны соотношением:

Формула

Дисперсия диэлектрической проницаемости. Зависимость диэлектрической проницаемости от частоты w переменного поля e(w) = e1(w) + ie2(w) называется дисперсией диэлектрической проницаемости. Характер дисперсии определяется процессом установления поляризации во времени. Если процесс установления поляризации - релаксационный (см.рис.3,а), то дисперсия будет иметь вид, изображенный на рис.4, а. Когда период колебания электрического поля велик по сравнению с временем релаксации t (частота w мала по сравнению с 1/t), поляризация успевает следовать за полем и поведение Д. в переменном электрическом поле не будет существенно отличаться от его поведения в постоянном поле (т. е. e1 = e, e2 = 0, как на рис.3, а). При частотах w » 1/t Д. не будет успевать поляризироваться, т. е. амплитуда P будет очень мала по сравнению с величиной поляризации P0 в постоянном поле. Это значит, что e1» 1, а e2» 0. Т. о., e1 с ростом частоты изменяется от e до 1. Наиболее резкое изменение e1 происходит как раз на частотах w ~ 1/t. На этих же частотах e2 проходит через максимум. Такой характер дисперсии e (w) называется релаксационным. Если поляризация в процессе установления испытывает колебания, как показано на рис.3, б, то дисперсия e (w) будет иметь вид, изображенный на рис.4, б. В этом случае характер дисперсии называется резонансным.

а - релаксационный характер дисперсии диэлектрической проницаемости e(w), соответствующий зависимости P(t), изображенной на рис. 3, а; б - резонансный характер дисперсии диэлектрической проницаемости e(w), соответствующий зависимости, изображенной на рис. 3, б

Рис. 4 а - релаксационный характер дисперсии диэлектрической проницаемости e(w), соответствующий зависимости P(t), изображенной на рис. 3, а; б - резонансный характер дисперсии диэлектрической проницаемости e(w), соответствующий зависимости, изображенной на рис. 3, б

В реальном веществе дисперсия e (w) имеет более сложный характер, чем на рис.4. На рис. 5 изображена зависимость e (w), характерная для широкого класса твёрдых Д. Из рис.5 видно, что можно выделить несколько областей дисперсии в разных диапазонах частот. Наличие этих, обычно чётко разграниченных, областей указывает на то, что поляризация Д. обусловлена различными механизмами. Например, в ионных кристаллах поляризацию можно представить как сумму ионной и электронной поляризаций. Типичные периоды колебаний ионов ~ 10-13 сек. Поэтому дисперсия e (w), обусловленная ионной поляризацией, приходится на частоты ~ 1013 гц (инфракрасный диапазон). Характер дисперсии обычно резонансный. При более высоких частотах ионы уже не успевают смещаться и весь вклад в поляризацию обусловлен электронами. Характерные периоды колебаний электронов определяются шириной запрещённой зоны Д. Когда энергия фотона ћw (ћ - Планка постоянная) становится больше ширины запрещённой зоны, фотон может поглотиться, вызвав переход электрона через запрещённую зону. В результате электромагнитные волны на таких частотах (w ~ 1015 гц - ультрафиолетовый диапазон) сильно поглощаются, т. е. резко возрастает величина e2. При меньших частотах (в частности, для видимого света) чистые однородные Д., в отличие от металлов, обычно прозрачны. В полярных Д. под действием электрического поля происходит ориентация диполей. Характерные времена установления поляризации при таком ориентационном механизме сравнительно велики: t ~ 10-6-10-8 сек (диапазон сверхвысоких частот). Характер дисперсии при этом обычно релаксационный. Т. о., изучая зависимость e (w), можно получить сведения о свойствах Д. и выделить вклад в поляризацию от различных механизмов поляризации.

Зависимость e1 твёрдого диэлектрика от частоты w поля Е

Рис. 5 Зависимость e1 твёрдого диэлектрика от частоты w поля Е

Диэлектрическая проницаемость разных веществ. Статическое значение диэлектрической проницаемости e существенно зависит от структуры вещества и от внешних условий (например, от температуры), обычно меняясь в пределах от 1 до 100-200 (у сегнетоэлектриков до 104-105, таблица 1).

Таблица 1.

Диэлектрическая проницаемость e некоторых твёрдых диэлектриков

Диэлектрик

e

Kaмeнная соль, NaCI

6,3

Рутил, Ti02 (вдоль оптической оси)

170

Алмаз, С

5,7

Кварц, Si02

4,3

Лёд, Н20 (при - 5°С)

73

Титанат бария, ВаТi03 (при 20°С перпендикулярно оптической оси)

4000


Такой разброс значений e объясняется тем, что в разных веществах основной вклад в e на низких частотах дают различные механизмы поляризации. В ионных кристаллах наиболее существенна ионная поляризация. На высоких частотах (w і 1014 гц) значения e (w) для разных ионных кристаллов близки к 1. Это обусловлено тем, что вклад от электронной поляризации, которая для этих частот только и имеет место, невелик. В ковалентных кристаллах, где основной вклад в поляризацию даёт перераспределение валентных электронов, статическая проницаемость e мало отличается от высокочастотной e1 (w). При этом величина e зависит от жёсткости ковалентной связи, которая тем меньше, чем уже запрещённая зона D. Например, для алмаза (D = 5,5 эв) e = 5,7. Для кремния (D = 1,1 эв) e = 12. Большой вклад в e1 даёт ориентационная поляризация. Поэтому в полярных Д. e сравнительно велика, например для воды e = 81.

Методы измерения диэлектрической проницаемости различны для разных частот.

Поляризация диэлектриков в отсутствии электрического поля. До сих пор рассматривались Д., в которых поляризация возникала под действием внешнего электрического поля. Однако в ряде твёрдых Д. наличие поляризации может быть вызвано др. причинами. В пироэлектриках поляризация существует и без электрического поля. В таких кристаллах заряды располагаются столь несимметрично, что центры тяжести зарядов противоположного знака не совпадают, т. е. Д. спонтанно (самопроизвольно) поляризован. В пьезоэлектриках поляризация возникает при деформировании кристалла. Это связано с особенностями строения кристаллической решётки таких веществ .

Большой интерес представляют сегнетоэлектрики, которые являются особой разновидностью пироэлектриков. Спонтанная поляризация сегнетоэлектриков существенно меняется, в отличие от обычных пироэлектриков, под влиянием внешних воздействий (температуры, электрического поля). Сегнетоэлектрики поэтому характеризуются очень большими значениями e, сильной нелинейной зависимостью P от Е, доменной структурой и наличием спонтанной поляризации лишь в определённом интервале температур. В этом смысле диэлектрические свойства сегнетоэлектриков аналогичны магнитным свойствам ферромагнетиков.

Поляризация в отсутствии электрического поля может наблюдаться также в некоторых веществах типа смол и стёкол, называемых электретами. Поляризованные при высоких температурах, а затем охлаждённые, электреты сохраняют достаточно долгое время поляризацию без поля.

Электропроводность Д. мала, однако всегда отлична от нуля (таблица 2). Носителями тока в Д. могут быть электроны и ионы. Электронная проводимость Д. обусловлена теми же причинами, что и электропроводность полупроводников. В обычных условиях, однако, электронная проводимость Д. мала по сравнению с ионной. Ионная проводимость может быть обусловлена перемещением как собственных ионов, так и примесных. Возможность перемещения ионов по кристаллу тесно связана с наличием дефектов в кристаллах. Если, например, в кристалле есть вакансии(незанятые узлы кристаллической решётки), то под действием поля ион может перескочить на соседнее с ним вакантное место. Во вновь образовавшуюся вакансию может перескочить следующий ион и т.д. В итоге происходит движение вакансий, которое приводит к переносу заряда через весь кристалл. Перемещение ионов может происходить и в результате перескоков ионов по междоузлиям. С ростом температуры ионная проводимость сильно возрастает. Заметный вклад в электропроводность Д. может вносить поверхностная проводимость.

Пробой. Электрический ток в Д. пропорционален напряжённости электрического поля Е (Ома закон). Однако в достаточно сильных полях ток нарастает быстрее, чем по закону Ома. При некотором критическом поле Епр наступает электрический пробой Д. Величина Епр называется электрической прочностью Д. (таблица 2). При пробое однородное токовое состояние становится неустойчивым и почти весь ток начинает течь по узкому каналу. Плотность тока j в этом канале достигает очень больших значений, что приводит к необратимым изменениям в Д.

Таблица 2.

Удельное сопротивление r и электрическая прочность Епр некоторых твёрдых диэлектриков, используемых в качестве изоляционных материалов

Диэлектрический материал

r, ом·см

Епр, в/см

Кварцевое стекло

1016-1018

2-3·105

Полиэтилен

1015-1016

4·105

Слюда

1014-1016

1-2·106

Электрофарфор

1013-1014

3·105

Мрамор

108-109

2-3·105



Зависимость плотности тока j от напряжения электрического поля Е в диэлектрике; пунктир соответствует неустойчивым состояниям

Рис. 6 Зависимость плотности тока j от напряжения электрического поля Е в диэлектрике; пунктир соответствует неустойчивым состояниям

На рис.6 приведена зависимость плотности тока j от напряжённости электрического поля Е, рассчитанная в предположении, что ток однороден по сечению образца. Эта зависимость может быть описана соотношением:

Формула

где удельное сопротивление r не постоянная величина, как в законе Ома, а зависит от j. Дифференцируя это соотношение, получим выражение:

Формула

из которого видно, что, если величина

Формула

отрицательна, то с ростом j величина

Формула

может стать отрицательной (дифференциальное отрицательное сопротивление). Состояние с отрицательным дифференциальным сопротивлением является неустойчивым и приводит к образованию канала тока при Е = Епр.

В твёрдых Д. различают тепловой и электрический пробой. При тепловом пробое с ростом j растёт джоулево тепло и, следовательно, температура Д., что приводит к увеличению числа носителей тока n. В результате r падает. При электрическом пробое с ростом j также возрастает число носителей n, а r c увеличением n падает.

В реальных Д. большую роль при пробое играют всегда присутствующие неоднородности. Они способствуют пробою, т.к. в местах неоднородности Е может локально возрасти. Необратимые изменения в Д., связанные с образованием токового канала при пробое, могут быть разного характера. Например, в Д. образуется сквозное отверстие или Д. проплавляется по каналу. В канале могут протекать химические реакции, например в органических Д. осаждается углерод, в ионных Д. выпадает металл (металлизация канала).

Электрическая прочность жидких Д. в сильной степени зависит от чистоты жидкости. Наличие примесей и загрязнений существенно понижает Епр. Для чистых, однородных жидких Д. Епр близка к Епр твёрдых Д.

Пробой в газах связан с механизмом ударной ионизации и проявляется в виде электрического разряда в газах.

Нелинейные свойства Д. Поляризация Д., как указывалось выше, пропорциональна напряжённости электрического поля. Однако такая линейная зависимость справедлива только для электрических полей, значительно меньших внутрикристаллических полей Екр ~ 108 в/см. Т. к. обычно Епр « Екр, то в большинстве Д. не удаётся наблюдать нелинейную зависимость P (Е) в постоянном электрическом поле. Исключение составляют сегнетоэлектрики, где в определённом интервале температур (в сегнетоэлектрической области и вблизи точек фазовых переходов) наблюдается сильная нелинейная зависимость P (Е).

При высоких частотах электрическая прочность Д. повышается, поэтому нелинейные свойства любых Д. проявляются в высокочастотных полях больших амплитуд. В луче лазера могут быть созданы электрические поля напряжённости 108 в/см. В таких полях становятся очень существенными нелинейные свойства Д., что позволяет осуществить преобразование частоты света, самофокусировку света и др. нелинейные эффекты.

Д. в науке и технике используются прежде всего как электроизоляционные материалы. Для этого необходимы Д. с большим удельным сопротивлением, высокой электрической прочностью и малым углом диэлектрических потерь. Д. с высоким значением e используются как конденсаторные материалы. Ёмкость конденсатора, заполненного Д., возрастает в e раз. Пьезоэлектрики широко применяются для преобразований звуковых колебаний в электрические и наоборот (приёмники и излучатели ультразвука, звукосниматели и др.). Пироэлектрики служат для индикации и измерения интенсивности инфракрасного излучения. Сегнетоэлектрики применяют в радиотехнике для создания нелинейных элементов, входящих в состав различных схем (усилители, стабилизаторы частоты и преобразователи электрических сигналов, схемы регулирования и др.).

Д. используются и в оптике. Чистые Д. прозрачны в оптическом диапазоне. Вводя в Д. примеси, можно окрасить его, сделав непрозрачным для определённой области спектра (фильтры). Диэлектрические кристаллы используются в квантовой электронике (в квантовых генераторах света - лазерах и квантовых усилителях СВЧ). Ведутся работы по использованию Д. в вычислительной технике и т. п.

Лит.: Фейнман Р., Лейтон Р., Сэндс М., Фейнмановские лекции по физике, [в. 5] - Электричество и магнетизм, пер. с англ., М., 1966; Калашников С. Г., Электричество, 2 изд., М., 1964; Физический энциклопедический словарь, т. 1, М., 1960; Сканави Г. И., Физика диэлектриков (Область слабых полей), М. - Л., 1949; его же, Физика диэлектриков (Область сильных полей), М. -Л., 1958; Фрёлих Г., Теория диэлектриков, М., 1960; Хиппель А. Р., Диэлектрики и волны, пер. с англ., М., 1960; Желудев И. С., Физика кристаллических диэлектриков, М., 1968.

А. П. Леванюк, Д. Г. Санников

Длительная прочность

Сопротивление материала механическому разрушению под действием постоянной нагрузки, приложенной в течение длительного времени. Д.п. определяется обычно при повышенных температурах (300 - 1000°С).

Д. п. характеризуется пределом длительной прочности, напряжением, которое вызывает разрушение материала при заданной температуре за определенное время. В обозначении предела длительной прочности указывают рабочую температуру и время до разрушения. Например Формула, означает, что при температуре 600°С материал выдержит действие напряжения, равного130 МПа , в течение 10000 ч.

Сафонов Б.П.

Доводка в металлообработке

Чистовая,отделочная обработка деталей с целью получения точных размеров (1-й класс и выше) и чистой поверхности, соответствующей 10-14-му классам, а также притирка одной детали к другой.

Д. производят вручную или на доводочных станках инструментом - притиром с использованием абразивных порошков или паст. При Д. вручную и притирке деталей, работающих в паре (например, клапан - седло клапана), притиром служит сама деталь, на поверхность которой наносят абразивный порошок или пасту. Д. осуществляют также на доводочных плитах, поверхность которых насыщают (шаржируют) абразивным порошком (пастой). Д. сводится к многократным перемещениям детали по доводочной плите, притира по детали или одной детали относительно другой.

Д. применяется при изготовлении точного измерительного инструмента, топливной и гидравлической аппаратуры и т.п.

Долбёжный станок

1) Металлорежущий станок для обработки труднодоступных прямых или наклонных наружных и внутренних поверхностей, пазов и канавок любых профилей (главным образом несквозных, с малыми расстояниями для выхода инструмента). Главное движение - прямолинейное - осуществляется возвратно-поступательным перемещением в вертикальной плоскости ползуна с суппортом и закреплённым в нём долбёжным резцом, или долбяком. Привод ползуна механический или гидравлический. Движение подачи - прямолинейное или круговое - выполняется периодическими перемещениями стола, на котором закрепляют обрабатываемые изделия. Производительность Д.с. ниже, чем фрезерного и протяжного. Применяют в единичном и мелкосерийном производствах.

2) В деревообработке - станок для выборки прямоугольных и овальных пазов и отверстий в деревянных деталях. Д.с. применяют при производстве мебели, окон, дверей, лыж, деталей для вагонов, судов и т.д. В зависимости от типа используемого режущего инструмента различают Д.с. цепно-, сверлильно- и резцедолбёжные. Режущий инструмент цепнодолбёжных Д. с. - фрезерные цепочки различных размеров (в зависимости от величины паза или гнезда), движущиеся по специальной направляющей (сменной) шине. Режущий инструмент сверлильнодолбёжных Д.с. - полое долото, в середине которого вращается сверло. Рабочий стол, на котором крепится деталь, может перемещаться в продольном и поперечном направлениях и наклоняться под углом к горизонтальной плоскости. Резцедолбёжные станки снабжены плоскими резцами, имеющими в нижней рабочей части зубья-резцы, которые, осуществляя качательное движение, долбят отверстия и одновременно удаляют стружку.

Д. Л. Юдин, Н. К. Якунин

Долбление

Способ обработки металлов и древесных материалов резанием на долбежных станках. Д. получают канавки, шпоночные пазы, фасонные отверстия, фаски, прорези и т.п.

В процессе Д. долбежный резец (или долбяк) обычно совершает возвратно-поступательное движение в вертикальной плоскости, а обрабатываемая заготовка – движение подачи. В металлообработке Д. — малопроизводительный процесс, дающий низкую точность обработки, часто заменяется фрезерованием или протягиванием.

Долбяк

Металлорежущий инструмент для нарезания зубьев прямозубых и косозубых зубчатых колёс наружного и внутреннего зацепления, зубчатых венцов шевронных колёс с канавкой и без неё, зубчатых колёс блоков, зубчатых колёс с выступающими фланцами, ограничивающими свободный выход инструмента и зубчатых реек. Д. имеет вид зубчатого колеса, снабжённого режущими элементами с соответствующей заточкой; изготовляется из быстрорежущей стали. Д. бывают 5 типов (см. рис. 1)

Долбяки

Рис . 1 Долбяки: а - тип I (дисковые прямозубые с диаметрами 75, 100, 125, 160 и 220 мм); б - тип II (дисковые косозубые с диаметром 100 мм); в - тип III (чашечные прямозубые с диаметрами 50, 75, 100 и 125 мм); г - тип IV (хвостовые прямозубые с диаметрами 25, 38 мм); д - тип V (хвостовые косозубые с диаметром 38 мм и углами наклона 15° и 23°)

Д. делятся на три класса: АА предназначается для обработки зубчатых колёс 6-й степени точности, А - 7-й и Б - 8-й. При нарезании зубьев Д. и обрабатываемая заготовка обкатываются по начальным окружностям без скольжения. Кроме вращения, Д. движется возвратно-поступательно вдоль оси заготовки, а также поступательно в радиальном направлении на величину высоты зуба (или её части) нарезаемого колеса. Срезание стружки происходит при движении Д. вниз (рабочий ход); обратный ход холостой.

В. В. Данилевский

Долговечность

Свойство изделия сохранять работоспособность до предельного состояния с необходимыми перерывами для технического обслуживания и ремонтов. Предельное состояние изделия определяется в зависимости от его схемно-конструктивных особенностей, режима эксплуатации и сферы использования. Для многих неремонтируемых изделий (например, осветительные лампы, шестерни, узлы бытовых электро- и радиоприборов) предельное состояние совпадает с отказом. В ряде случаев предельное состояние определяется достижением периода повышенной интенсивности отказов. Таким методом определяется предельное состояние для компонент автоматических устройств, выполняющих ответственные функции. Применение этого метода обусловлено снижением эффективности эксплуатации изделий, компоненты которых имеют повышенную интенсивность отказов, а также нарушением требований безопасности. Период эксплуатации неремонтируемых изделий до предельного состояния устанавливается по результатам специальных испытаний и вносится в техническую документацию на изделия. Если нельзя заранее получить сведения об изменении интенсивности отказов, предельное состояние изделия определяется непосредственным обследованием его состояния в процессе эксплуатации.

Предельное состояние ремонтируемых изделий определяется неэффективностью их дальнейшей эксплуатации из-за старения и частых отказов или увеличения затрат на ремонт. В некоторых случаях критерием предельного состояния ремонтируемых изделий может быть нарушение требований безопасности, например на транспорте. Предельное состояние может также определяться моральным устареванием.

Различают показатели долговечности, характеризующие долговечность по наработке и по календарному времени службы. Показатель, характеризующий долговечность изделия по наработке, называется ресурсом; показатель, характеризующий долговечность по календарному времени, - сроком службы. Различают ресурс и срок службы до первого капитального ремонта, между капитальными ремонтами, до выбраковки изделия.

Лит.: Хевиленд Р., Инженерная надежность и расчет на долговечность, пер. с англ., М.-Л., 1966; Колегаев Р. Н., Определение оптимальной долговечности технических систем, М., 1967; Меламед Г. И., Счастливенко Ф. Е., Надежность и долговечность станочных систем, Минск, 1967; ГОСТ 13377-67. Надежность в технике. Термины, М., 1968; Проников А. С., Основы надежности и долговечности машин, М., 1969.

О. Г. Лосицкий, В. Н. Фомин

Д. зданий и сооружений - предельный срок службы зданий и сооружений, в течение которого они сохраняют требуемые эксплуатационные качества. Различают Д. моральную и физическую. Моральная Д. (срок морального износа) характеризуется сроком службы зданий и сооружений до того момента, когда они перестают отвечать изменяющимся условиям эксплуатации или режимам технологических процессов. Физическая Д. определяется продолжительностью износа основных несущих конструкций и элементов (например, каркаса, стен, фундаментов и др.) под воздействием нагрузок и физико-химических факторов. При этом некоторые конструктивные элементы и части зданий и сооружений (лёгкое стеновое ограждение, кровля, перекрытия, полы, оконные переплёты, двери и прочее) могут иметь меньшую Д. и заменяться при капитальном ремонте. Постепенный физический износ конструкций происходит неравномерно в течение общего срока службы здания; в первый период после постройки - быстрее (что связано с деформациями конструкций, неравномерными осадками грунта и т.п.), а в последующий, преобладающий по длительности, - медленнее (нормальный износ). По окончании первого периода эксплуатации здания отдельные его конструкции могут нуждаться в специальном послеосадочном ремонте.

Д. сокращается при неправильной эксплуатации зданий и сооружений, перегрузках конструкций, а также при резко выраженных разрушающих влияниях окружающей среды (действие влаги, ветра, мороза и т.д.). Большое значение для обеспечения Д. имеет правильный выбор конструктивных решений с учётом особенностей климата и условий эксплуатации. Повышение Д. достигается применением строительных и изоляционных материалов, обладающих высокой стойкостью при замораживании и оттаивании, влагостойкостью, биостойкостью, и защитой конструкций от проникновения в них разрушающих агентов и прежде всего жидкой влаги. В строительных нормах и правилах, действующих в СССР, установлены следующие степени долговечности ограждающих конструкций: I степень со сроком службы не менее 100 лет, II - 50 лет и III - 20 лет.

Лит.: Долговечность ограждающих и строительных конструкций (Физические основы), под ред. О. Е. Власова, М., 1963; Ильинский В. М., Проектирование ограждающих конструкций зданий (с учетом физико-климатических воздействий), 2 изд., М., 1964; Долговечность строительных конструкций зданий химической промышленности. Сборник трудов, Ростов н/Д., 1968; Износ и защита строительных конструкций промышленных зданий с агрессивной средой производства, М., 1969.

Е. Г. Кутухтин

Долом

Часть усталостного излома, возникающая в завершающей стадии разрушения из-за недостатка прочности сечения по трещине.

Д. происходит под действием статической нагрузки, воспринимаемой деталью.

Доломит

По имени французского геолога Д. Доломьё (D. Dolomieu; 1750-1801)

1) минерал из группы карбонатов. По химическому составу Д. - двойная углекислая соль кальция и магния: CaMg[CO3]2. Кристаллизуется в тригональной системе, образуя хорошо огранённые кристаллы ромбоэдрического облика. В природе Д. встречаются в крупно-, мелко- и скрытокристаллических агрегатах, иногда как породообразующий минерал в оолитовых, почковидных, ячеистых и др. формах. Крупнокристаллические агрегаты встречаются обычно в гидротермальных образованиях, а также среди карбонатных толщ, подвергшихся существенной перекристаллизации и метаморфизму.

Цвет серовато-белый, иногда с желтоватым, буроватым или зеленоватым оттенками. Твёрдость по минералогической шкале 3,5-4; плотность 2800-2900 кг/м3. В отличие от кальцита, не вскипает в холодной соляной кислоте, но растворяется при нагревании.

2) Осадочная горная порода, на 90% и более состоящая из минерала доломита; при содержании Д. 50-90% породу называют известковистым Д.; при ещё меньшем содержании Д. - доломитизированным известняком. Самой обычной примесью является кальцит, нередко ангидрит или гипс, иногда аутигенный кремнезём. Д. по структуре и пористости бывают плотные с преобладанием основной минеральной массы или цементируемого материала и кавернозно-пористые с резким преобладанием цемента. Д. по происхождению подразделяются на две генетические группы: экзогенные и эндогенные. Главная масса Д. образовалась экзогенным путём в морях, лагунах и осолоняющихся озёрах (не имеющих связи с морями) при диагенетическом преобразовании известкового ила в условиях повышенной солёности воды. Залегают эти Д. обычно среди известняковых толщ в виде пластов, иногда большого протяжения, пластообразных линз, скоплений кристаллов, а также среди глин, обломочных и сульфатных пород (ангидритов). Экзогенные Д. возникают также в результате эпигенетической доломитизации известняков. Эндогенные Д. образуются в результате гидротермальных и гидротермально-метасоматических процессов. При этом возникают жилы, тела неправильной формы и штокверки.

Д. обнаружены в осадочных толщах всех геологических периодов, но особенно широко они распространены в отложениях докембрия и палеозоя. Месторождения Д. весьма многочисленны как в СССР, так и за рубежом.

Д. имеет широкое практическое применение. Употребляется в обожжённом виде в качестве огнеупора для футеровки металлургических печей, составляет часть шихты для стёкол повышенной стойкости и прочности, используется при изготовлении тугоплавкой глазури, белой магнезии, в качестве облицовочного камня, бутового камня и щебня для бетона. Д. и особенно доломитизированные известняки применяются как флюсы при доменной плавке и в сельском хозяйстве как добавки, нейтрализующие кислые почвы. За рубежом (США) является сырьём для получения магния.

Лит.: Страхов Н. М., О типах и генезисе доломитовых пород, в кн.: Труды Геологического института АН СССР, в. 4, М., 1956; Курс месторождений неметаллических полезных ископаемых, М., 1969.

Г. И. Теодорович

Доменное производство

Производство чугуна восстановительной плавкой железных руд или окускованных железорудных концентратов в доменных печах. Д.п. - отрасль чёрной металлургии.

Историческая справка. Чугун был известен за 4-6 вв. до н. э. Д.п. возникло в результате развития сыродутного процесса - «прямого» получения железа в твёрдом состоянии непосредственно из железной руды путём восстановления её в низких горнах или шахтных печах (домницах) с помощью древесного угля. Первые доменные печи в Европе появились в середине 14 в., а в России - около 1630, вблизи Тулы и Каширы. На Урале первый чугун получен в 1701, а в середине 18 в. благодаря развитию уральской металлургии Россия вышла на 1-е место в мире, которое удерживала до начала 19 в. До середины 18 в. единственное топливо в Д. п. - древесный уголь. В 1735 А. Дерби применил в доменной плавке каменно-угольный кокс.

Основные этапы развития Д.п.: применение паровой воздуходувной машины (И. И. Ползунов, 1766), нагрев дутья (Дж. Нилсон, 1829), изобретение кирпичного воздухонагревателя регенеративного типа (Э. Каупер, 1857). В 1913 в России было выплавлено 4,2 млн. т чугуна и она занимала 5-е место в мире. В 1940 в СССР было выплавлено 15 млн. т чугуна (3-е место в мире), а с 1947 Советский Союз уступал только США. В 1970 СССР вышел на 1-е место в мире. Выплавка чугуна в СССР в 1971 составила 89,3 млн. т. Большую роль в развитии Д.п. в СССР сыграли М. А. Павлов, М. К. Курако, И. П.Бардин. Д. п. в СССР характеризуется применением высокомеханизированных и автоматизированных агрегатов и передовой технологии.

Исходными материалами (шихтой) в Д.п. являются: железная руда, марганцевая руда, агломерат, окатыши, а также горючее и флюсы. Широкое применение в шихте доменных печей СССР получил офлюсованный агломерат (свыше 90%), который содержит 50-60% Fe при основности 1,1-1,3; расширяется применение офлюсованных окатышей. Важнейшие свойства железосодержащих шихтовых материалов, определяющие технико-экономические показатели доменной плавки: содержание железа, состав пустой породы, количество вредных примесей, а также гранулометрический состав, прочность и восстановимость. Основным горючим в Д. п. служит каменноугольный кокс. Получает распространение плавка с заменой части кокса газообразным, жидким или твёрдым топливом, вдуваемым в горн доменной печи. В качестве флюсов используется известняк, иногда доломит.

Основные виды чугуна, выплавляемого в доменных печах: передельный чугун, используемый для производства стали в сталеплавильных агрегатах; литейный, идущий для чугунных отливок; специальные чугуны. Побочные продукты Д. п.: доменный газ[теплота сгорания 3,6-4,6 Мдж/м3 (850-1100 ккал/м3)] после очистки от пыли используется для нагрева дутья в воздухонагревателях, а также в заводских котельных установках, коксохимических, агломерационных и некоторых др. цехах; доменный шлак находит применение главным образом в промышленности строительных материалов; колошниковая пыль, выносимая из печи и улавливаемая системой газоочистки, содержащая 30-50% Fe, возвращается в шихту доменных печей после её предварительного окускования (главным образом путём агломерации).

Доменный цех (см. рис. 1) завода с полным металлургическим циклом имеет, как правило, не менее 3 доменных печей с воздухонагревателями и системой газоочистки. Запас шихты (кокса на 6-12 ч, агломерата или руды, а также флюсов на 1-2 суток работы печей) хранится в бункерах эстакады (общей для всех доменных печей). На многих металлургических заводах в состав доменного цеха входит так называемый рудный двор, где хранится основной запас железных руд, укладываемых в штабеля рудными перегружателями. Формирование штабеля и забор из него материалов производятся с учётом усреднения руд. В доменном цехе имеются также машины для разливки чугуна.

Современный доменный цех

Рис. 1 Современный доменный цех: 1 - доменная печь; 2 - чугунная лётка; 3 - чугуновозы; 4 - газоотводы; 5 - литейные дворы; 6 - воздухонагреватели; 7 - дымовая труба; 8 - воздухопроводы холодного и горячего дутья; 9 - пункт управления; 10 - пылеуловитель; 11 - аппараты тонкой газоочистки; 12 - скиповой подъёмник; 13 - бункерная эстакада; 14 - газопроводы грязного и чистого газа; 15 - лифт; 16 - агломерационная фабрика

Доменная печь (см. рис. 2) представляет собой шахтную печь круглого сечения; футерована огнеупорной кладкой (верхняя часть шамотным кирпичом, нижняя - преимущественно углеродистыми блоками). Для предотвращения разгара кладки и защиты кожуха печи от высоких температур используют холодильники, в которых циркулирует вода. Кожух печи и колошниковое устройство поддерживаются колоннами, установленными на фундаменте.

Доменная печь

Рис. 2 Доменная печь: 1 - защитные сегменты колошника; 2 - большой конус; 3 - приёмная воронка; 4 - малый конус; 5 - распределитель шихты; 6 - воронка большого конуса; 7 - наклонный мост; 8 - скип; 9 - воздушная фурма; 10 - чугунная лётка; 11 - шлаковая лётка

Шихта подаётся на колошник печи скипами, реже ленточными конвейерами. Скипы разгружаются в печь через приёмную воронку и засыпной аппарат, установленный на колошнике. Воздух (дутьё) от воздуходувных машин подаётся в печь через воздухонагреватели (в которых нагревается до 1000-1200°С) и фурменные приборы, установленные по окружности горна. Через фурмы вводится также дополнительное топливо (природный газ, мазут или угольная пыль).

Продукты плавки выпускаются в чугуновозные и шлаковые ковши через лётки, расположенные в нижней части горна. Образующийся в печи колошниковый газ отводится через газоотводы, расположенные в куполе печи (см. рис.3)

Работа доменной печи

Рис. 3 Работа доменной печи

Расстояние между осью чугунной лётки и нижней кромкой большого загрузочного конуса в опущенном состоянии называется полезной высотой доменной печи, а соответствующий объём - полезным объёмом доменной печи. Мощные доменные печи в СССР имеют полезный объём 2000-3000 м3 и являются одними из крупнейших в мире. Директивы по 9-му пятилетнему плану предусматривают строительство доменных печей объёмом 5000 м3.

Основные химические процессы в доменной печи - горение топлива и восстановление Fe, Si, Mn и др. элементов. Часть кокса расходуется на процессы восстановления, но основное количество опускается в горн и сгорает вместе с вдуваемым топливом у фурм. Газы с t 1600-2300°С, содержащие 35-45% CO, 1-12% H2 и 45-65% N2, поднимаясь по печи, нагревают опускающуюся шихту, при этом CO и H2 частично окисляются до CO2 и H2O. Газы, выходящие из печи, имеют t 150-300°С.

Горение у фурм. У фурм доменной печи возникают очаги горения, называемые окислительными зонами, в которых вихревое движение газов приводит к циркуляции кусков кокса. Горение кокса развивается на поверхности контакта твёрдой и газообразной фаз. При этом кислород соединяется с углеродом в сложные комплексы СхОу, которые затем распадаются. В упрощённом виде суммарный процесс горения углерода твёрдого топлива у фурм сводится к экзотермической реакции 2C + O2 = 2CO. При вдувании природного газа или мазута, в которых главной составляющей являются углеводороды (например, метан), протекает реакция с выделением CO и H2; при этом поглощается значительная часть тепла, выделяемого при сжигании С, а следовательно, понижается температура горения у фурм. Во избежание этого необходимо повышать температуру дутья и обогащать его кислородом. Положительное влияние вдувания углеводородных топлив - в повышении концентрации водорода в газе и улучшении благодаря этому его восстановительной способности.

Восстановление железа и др. элементов. В доменной печи Cu, As, Р, подобно Fe, восстанавливаясь, почти полностью переходят в чугун. Полностью восстанавливается и Zn, который затем возгоняется, переходит в газы и отлагается в порах кладки, вызывая её разрушение. Те элементы, которые образуют более прочные соединения с кислородом, чем Fe, восстанавливаются частично или совсем не восстанавливаются: V восстанавливается на 75-90%, Mn на 40-75%, Si и Ti в небольших количествах, Al, Mg и Ca не восстанавливаются.

Восстановление поступающих в доменную печь окислов Fe2O3 и Fe3O4 происходит путём последовательного отщепления кислорода по реакциям:

3Fe2O3 + CO (H2) = 2Fe3O4 + CO2 (H2O),

Fe3O4 + CO (H2) = 3FeO + CO2 (H2O).

Закись железа FeO восстанавливается до Fe газами (косвенное восстановление) и углеродом (прямое восстановление).

FeO + CO (H2) = Fe + CO2 (H2O),

FeO + C = Fe + CO.

Высшие окислы марганца MnO2, Mn2O3 и Mn3O4 восстанавливаются газами с выделением тепла. В дальнейшем MnO восстанавливается до Mn только углеродом с затратой тепла примерно в 2 раза большей, чем при восстановлении Fe. Si также восстанавливается только С при высоких температурах по эндотермической реакции:

SiO2 + 2C + Fe = FeSi + 2CO.

Степень восстановления Si и Mn зависит в основном от расхода кокса; на каждый процент повышения содержания Si в чугуне расход кокса увеличивается на 5-7%, что увеличивает количество горячих газов в печи, вызывая перегрев шахты. Обогащение дутья кислородом, обеспечивая высокий нагрев горна, уменьшает количество образующихся газов, а следовательно, и температуру в шахте печи.

Сера в доменном процессе. S вносится в доменную печь в основном коксом и переходит в газы в виде паров (SO2, H2S и др.), но большая часть остаётся в шихте (в виде FeS и CaS); при этом FeS растворяется в чугуне. Для удаления S из чугуна необходимо перевести её в соединения, нерастворимые в чугуне, например в CaS:

FeS + CaO = CaS + FeO.

Это достигается образованием в доменной печи жидкоподвижных шлаков с повышенным содержанием СаО. Восстановительная среда благоприятно влияет на этот процесс, т.к. снижает содержание FeO в шлаке. Степень обессеривания достаточно высока, и только в некоторых случаях чугун дополнительно обессеривается вне доменной печи различными реагентами.

Образование чугуна и шлака. Восстановленное в доменной печи Fe частично науглероживается в твёрдом, а затем в жидком состояниях. Содержание C в чугуне зависит от температуры чугуна и его состава. Шлак состоит из невосстановившихся окислов SiO2, AI2O3 и СаО (90-95%), MgO (2-10%), FeO (0,1-0,4%), MnO (0,3-3%), а также 1,5-2,5% S (главным образом в виде CaS). Для характеристики шлаков пользуются обычно показателем основности CaO/SiO2 или (СаО + MgO)/SiO2. Основность CaO/SiO2 для разных условий плавки колеблется в пределах 0,95-1,35%. При выплавке чугуна на коксе с повышенным содержанием S (донецкий кокс) работают на шлаках с верхним пределом основности и стремятся обеспечить содержание MgO в шлаке 6-8% и более, улучшая его жидкоподвижность.

Работа доменной печи начинается с её задувки. При этом горн и заплечики загружаются коксом, а шахта - так называемой задувочной шихтой. В полностью загруженную печь подаётся нагретое дутьё (уменьшенное количество), кокс воспламеняется, и начинается опускание материалов. Первый выпуск чугуна и шлака производится через 12-24 ч, после чего количество дутья и рудная нагрузка (отношение массы руды к массе кокса в подаче) постепенно увеличиваются, и через несколько дней после задувки доменная печь достигает нормальной производительности.

Непрерывная работа (кампания) доменной печи от задувки до выдувки (остановки на капитальный ремонт) продолжается 5-6, а в некоторых случаях 8-10 лет и более, в течение которых печь 1-2 раза останавливается на так называемый средний ремонт для замены изношенной кладки шахты. Выплавка чугуна на мощных печах за одну кампанию достигает 5-8 млн. т чугуна и более.

Управление работой (ходом) доменной печи заключается в регулировании (в соответствии с качеством сырых материалов и видом выплавляемого чугуна) состава шихты, количества, температуры и влажности дутья, а также величины подачи или последовательности загрузки отдельных компонентов шихты и уровня засыпи. Ход доменной печи контролируется измерительными приборами, регистрирующими основные параметры загрузки, дутья, колошникового газа, температуру кладки печи на разных горизонтах.

Получили распространение плавка с вдуванием дополнительных видов топлива, обогащением дутья кислородом и работа с повышенным давлением колошниковых газов. При повышении давления на колошнике уменьшается перепад давлений между низом и верхом доменной печи; это обусловливает более ровный сход шихты, улучшает восстановительную работу газов, уменьшает вынос пыли.

Д. п. характеризуется высокой степенью автоматизации. На современной доменной печи автоматически осуществляются все операции шихтоподачи: набор компонентов шихты с отсевом мелочи, взвешивание, транспортировка на колошник и загрузка в печь по заданной программе. Автоматически поддерживаются оптимальный уровень засыпи и распределение шихтовых материалов на колошнике, давление колошникового газа, расход воды на охлаждение, температура и влажность дутья, а также содержание в нём кислорода и расход природного газа. Автоматизировано переключение воздухонагревателей и управление режимом их нагрева. Автоматические анализаторы обеспечивают непрерывную регистрацию состава колошникового газа и дутья. Внедряются системы автоматического регулирования подачи дутья и природного газа как по общему расходу, так и по отдельным фурмам.

Новые доменные печи оснащаются системами централизованного контроля и управления, которые обеспечивают усреднение показателей приборов и подсчёт комплексных показателей работы печи. Ведутся работы по комплексной автоматизации Д. п., в том числе управления тепловым режимом доменной печи с помощью ЭВМ.

Показатели работы доменной печи зависят главным образом от качества сырых материалов и степени подготовки их к плавке. Основные показатели: суточная производительность доменной печи в т и расход кокса на 1 т чугуна. В СССР производительность доменных печей иногда характеризуется коэффициентом использования полезного объёма (кипо), т. е. отношением полезного объёма в м3 к суточной выплавке передельного чугуна в т. Производительность доменной печи объёмом 3000 м3 - 7000 т чугуна в сутки. В 1970 средний кипо составил 0,597 (в некоторых случаях 0,43-0,45). Расход кокса на единицу выплавляемого чугуна имеет большое экономическое значение вследствие высокой стоимости кокса. Применение дополнительного топлива позволяет уменьшить расход кокса на 8-20% и снизить благодаря этому себестоимость чугуна. В СССР при выплавке передельного чугуна из хорошо подготовленной богатой железом шихты расход кокса 550-600 кг/т, а на некоторых заводах - не более 450-500 кг/т.

Совершенствование Д. п. направлено на улучшение подготовки сырых материалов к плавке, увеличение мощности (объёма) доменных печей, внедрение прогрессивной технологии, автоматического управления ходом доменной печи.

Лит.: Сборник трудов по теории доменной плавки, сост. М. А. Павлов, т. 1, М., 1957; Леонидов Н. К., Усовершенствование конструкций доменных печей, М., 1961; Доменный процесс по новейшим исследованиям. [Сб. ст.]. К 100-летию со дня рождения акад. М. А. Павлова, М., 1963; Доменное производство. Справочник, под ред. И. П. Бардина, т. 1-2, М., 1963; Готлиб А. Д., Доменный процесс, 2 изд., М., 1966.

В. Г. Воскобойников, А. Г. Михалевич