Четверг, 4 Июль 2024, 02:26

Сайт: Система поддержки учебных курсов НИ РХТУ
Курс: Электронная библиотека (Электронная библиотека)
Глоссарий: Терминологический словарь

Крейцсмейсель

От нем. Kreuzmeiвel

Узкое зубило для слесарной обработки твердых материалов (рубки, вырубания узких канавок и т.д.).

Кремний

Лат. Silicium.

Si - химический элемент IV группы периодической системы Менделеева; атомный номер 14, атомная масса 28,086. В природе элемент представлен тремя стабильными изотопами: 28Si (92,27%), 29Si (4,68%) и 30Si (3,05%).

Историческая справка. Соединения К., широко распространённые на земле, были известны человеку с каменного века. Использование каменных орудий для труда и охоты продолжалось несколько тысячелетий. Применение соединений К., связанное с их переработкой, - изготовление стекла - началось около 3000 лет до н. э. (в Древнем Египте). Раньше других известное соединение К. - двуокись SiO2 (кремнезём). В 18 в. кремнезём считали простым телом и относили к «землям» (что и отражено в его названии). Сложность состава кремнезёма установил И. Я.Берцелиус. Он же впервые, в 1825, получил элементарный К. из фтористого кремния SiF4, восстанавливая последний металлическим калием. Новому элементу было дано название «силиций» (от лат. silex - кремень). Русское название ввёл Г. И. Гесс в 1834.

Распространённость в природе. По распространённости в земной коре К. - второй (после кислорода) элемент, его среднее содержание в литосфере 29,5% (по массе). В земной коре К. играет такую же первостепенную роль, как углерод в животном и растительном мире. Для геохимии К. важна исключительно прочная связь его с кислородом. Около 12% литосферы составляет кремнезём SiO2 в форме минерала кварца и его разновидностей. 75% литосферы слагают различные силикаты и алюмосиликаты (полевые шпаты, слюды, амфиболы и т. д.). Общее число минералов, содержащих кремнезём, превышает 400.

При магматических процессах происходит слабая дифференциация К.: он накапливается как в гранитоидах (32,3%), так и в ультраосновных породах (19%). При высоких температурах и большом давлении растворимость SiO2 повышается. Возможна его миграция и с водяным паром, поэтому для пегматитов гидротермальных жил характерны значительные концентрации кварца, с которым нередко связаны и рудные элементы (золото-кварцевые, кварцево-касситеритовые и др. жилы).

Физические и химические свойства. К. образует тёмно-серые с металлическим блеском кристаллы, имеющие кубическую гранецентрированную решётку типа алмаза с периодом а = 5,431ancstrem.jpg, плотностью 2,33 г/см3. При очень высоких давлениях получена новая (по-видимому, гексагональная) модификация с плотностью 2,55 г/см3. К. плавится при 1417°С, кипит при 2600°С. Удельная теплоёмкость (при 20-100°С) 800 дж/(кгЧК), или 0,191 кал/(гЧград); теплопроводность даже для самых чистых образцов не постоянна и находится в пределах (25°С) 84-126 вт/(мЧК), или 0,20-0,30 кал/(смЧсекЧград). Температурный коэффициент линейного расширения 2,33Ч10-6 К-1; ниже 120K становится отрицательным. К. прозрачен для длинноволновых ИК-лучей; показатель преломления (для l=6 мкм) 3,42; диэлектрическая проницаемость 11,7. К. диамагнитен, атомная магнитная восприимчивость -0,13Ч10-6. Твёрдость К. по Моосу 7,0, по Бринеллю 2,4 Гн/м2 (240 кгс/мм2), модуль упругости 109 Гн/м2 (10890 кгс/мм2), коэффициент сжимаемости 0,325Ч10-6 см2/кг. К. хрупкий материал; заметная пластическая деформация начинается при температуре выше 800°С.

К. - полупроводник, находящий всё большее применение. Электрические свойства К. очень сильно зависят от примесей. Собственное удельное объёмное электросопротивление К. при комнатной температуре принимается равным 2,3Ч103 омЧм (2,3Ч105 омЧсм).

Полупроводниковый К. с проводимостью р-типа (добавки В, Al, In или Ga) и n-типа (добавки Р, Bi, As или Sb) имеет значительно меньшее сопротивление. Ширина запрещенной зоны по электрическим измерениям составляет 1,21 эв при 0 К и снижается до 1,119 эв при 300 К.

В соответствии с положением К. в периодической системе Менделеева 14 электронов атома К. распределены по трём оболочкам: в первой (от ядра) 2 электрона, во второй 8, в третьей (валентной) 4; конфигурация электронной оболочки 1s22s22p63s23p2. Последовательные потенциалы ионизации (эв): 8,149; 16,34; 33,46 и 45,13. Атомный радиус 1,33Е, ковалентный радиус 1,17Е, ионные радиусы Si4+ 0,39Е, Si4- 1,98Е.

В соединениях К. (аналогично углероду) 4-валентен. Однако, в отличие от углерода, К. наряду с координационым числом 4 проявляет координационное число 6, что объясняется большим объёмом его атома (примером таких соединений являются кремнефториды, содержащие группу [SiF6]2-).

Химическая связь атома К. с другими атомами осуществляется обычно за счёт гибридных sp3-орбиталей, но возможно также вовлечение двух из его пяти (вакантных) 3d-орбиталей, особенно когда К. является шестикоординационным. Обладая малой величиной электроотрицательности, равной 1,8 (против 2,5 у углерода; 3,0 у азота и т. д.), К. в соединениях с неметаллами электроположителен, и эти соединения носят полярный характер. Большая энергия связи с кислородом Si-O, равная 464 кдж/моль (111 ккал/моль), обусловливает стойкость его кислородных соединений (SiO2 и силикатов). Энергия связи Si-Si мала, 176 кдж/моль (42 ккал/моль); в отличие от углерода, для К. не характерно образование длинных цепей и двойной связи между атомами Si. На воздухе К. благодаря образованию защитной окисной плёнки устойчив даже при повышенных температурах. В кислороде окисляется начиная с 400°С, образуя кремния двуокись SiO2. Известна также моноокись SiO, устойчивая при высоких температурах в виде газа; в результате резкого охлаждения может быть получен твёрдый продукт, легко разлагающийся на тонкую смесь Si и SiO2. К. устойчив к кислотам и растворяется только в смеси азотной и фтористоводородной кислот; легко растворяется в горячих растворах щелочей с выделением водорода. К. реагирует с фтором при комнатной температуре, с остальными галогенами - при нагревании с образованием соединений общей формулы SiX4 . Водород непосредственно не реагирует с К., и кремневодороды (силаны) получают разложением силицидов (см. ниже). Известны кремневодороды от SiH4 до Si8H18 (по составу аналогичны предельным углеводородам). К. образует 2 группы кислородсодержащих силанов - силоксаны и силоксены. С азотом К. реагирует при температуре выше 1000°С. Важное практическое значение имеет нитрид Si3N4, не окисляющийся на воздухе даже при 1200°С, стойкий по отношению к кислотам (кроме азотной) и щелочам, а также к расплавленным металлам и шлакам, что делает его ценным материалом для химической промышленности, для производства огнеупоров и др. Высокой твёрдостью, а также термической и химической стойкостью отличаются соединения К. с углеродом (кремния карбид SiC) и с бором (SiB3, SiB6, SiB12). При нагревании К. реагирует (в присутствии металлических катализаторов, например меди) с хлорорганическими соединениями (например, с CH3Cl) с образованием органогалосиланов [например, Si (CH3)3CI], служащих для синтеза многочисленных >кремнийорганических соединений.

К. образует соединения почти со всеми металлами - силициды (не обнаружены соединения только с Bi, Tl, Pb, Hg). Получено более 250 силицидов, состав которых (MeSi, MeSi2, Me5Si3, Me3Si, Me2Si и др.) обычно не отвечает классическим валентностям. Силициды отличаются тугоплавкостью и твёрдостью; наибольшее практическое значение имеют ферросилиций (восстановитель при выплавке специальных сплавов, см. Ферросплавы) и силицид молибдена MoSi2 (нагреватели электропечей, лопатки газовых турбин и т. д.).

Получение и применение. К. технической чистоты (95-98%) получают в электрической дуге восстановлением кремнезёма SiO2 между графитовыми электродами. В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого К. Это требует предварительного синтеза чистейших исходных соединений К., из которых К. извлекают путём восстановления или термического разложения.

Чистый полупроводниковый К. получают в двух видах: поликристаллический (восстановлением SiCI4 или SiHCl3 цинком или водородом, термическим разложением Sil4 и SiH4) и монокристаллический (бестигельной зонной плавкой и «вытягиванием» монокристалла из расплавленного К. - метод Чохральского).

Специально легированный К. широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, управляемые диоды - тиристоры; солнечные фотоэлементы, используемые в космических кораблях, и т. д.). Поскольку К. прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике (см. также Кварц).

К. имеет разнообразные и всё расширяющиеся области применения. В металлургии К. используется для удаления растворённого в расплавленных металлах кислорода (раскисления). К. является составной частью большого числа сплавов железа и цветных металлов. Обычно К. придаёт сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании К. может вызвать хрупкость. Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие К. Всё большее количество К. идёт на синтез кремнийорганических соединений и силицидов. Кремнезём и многие силикаты (глины, полевые шпаты, слюды, тальки и т. д.) перерабатываются стекольной, цементной, керамической, электротехнической и др. отраслями промышленности.

В. П. Барзаковский

Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твёрдых скелетных частей и тканей. Особенно много К. могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения двуокиси кремния. В холодных морях и озёрах преобладают биогенные илы, обогащенные К., в тропических морях - известковые илы с низким содержанием К. Среди наземных растений много К. накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание двуокиси кремния в зольных веществах 0,1-0,5%. В наибольших количествах К. обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г К. При высоком содержании в воздухе пыли двуокиси кремния она попадает в лёгкие человека и вызывает заболевание - силикоз.

В. В. Ковальский

Лит.: Бережной А. С., Кремний и его бинарные системы. К., 1958; Красюк Б. А., Грибов А. И., Полупроводники - германий и кремний, М., 1961; Реньян В. Р., Технология полупроводникового кремния, пер. с англ., М., 1969; Салли И. В., Фалькевич Э. С., Производство полупроводникового кремния, М., 1970; Кремний и германий. Сб. ст., под ред. Э. С. Фалькевича, Д. И. Левинзона, в. 1-2, М., 1969-70; Гладышевский Е. И., Кристаллохимия силицидов и германидов, М., 1971; Wolf Н. F., Silicon semiconductor data, Oxf. - N. Y., 1965.

Крепежные детали

Детали для жесткого скрепления элементов машин и конструкций. К К. д. относятся болты, винты, шпильки, гайки, шурупы, заклепки, шпонки и т.п. изделия, а также вспомогатательные детали - шайбы и шплинты. К. д. стандартизированы и выпускаются в осн. специализированными предприятиями.

Кривошипный пресс

Машина кузнечно-штамповочного производства, в которой заготовка деформируется под действием давления рабочего органа, приводимого в движение кривошипным механизмом, работающим от электродвигателя. По приводу главного ползуна различают собст. кривошипные, эксцентриковые, кривошипно-коленные, кривошипно-рычажные (балансирные) и производят объемную и листовую штамповку, гибку, правку и т.п.

Криогенный агент (криоагент, хладагент)

Вещество (или смесь веществ), используемое в криогенной технике как рабочее тело и находящееся при криогенных температурах (ниже 120 К) хотя бы на одной из стадий рабочего цикла.

Источники криогенных температур

Криоагент

Температура кипения, °С

Аммиак

– 33,5

Углекислота

– 78,5

Хлористый метил

– 23,7

Азот

– 195,8

Смесь твердой углекислоты:

с хлористым метилом

– 82

с хлороформом

– 77

с этиловым эфиром

– 77

с треххлористым фосфором

– 76

с этиловым спиртом

– 72

с хлористым этилом

– 60

с ацетоном

– 78

Фреон

– 29,4

Этилен

– 105,2

Метан

– 161,5

Кислород

– 183

Сафонов Б.П.

Кристаллизатор

1) Аппарат для выделения твердых веществ при охлаждении растворов или расплавов; в металлургии - двухстенная водоохлаждаемая изложница для ускоренного затвердевания расплавленного металла. Применяется, например, в установках непрерывной разливки стали, установках электрошлакового переплава, в печах дуговых вакуумных.

2) К. в производстве сахара - аппарат для дополнительной кристаллизации сахара из вязкого продукта утфеля. Кристаллизация происходит при температуре 400С и при перемешивании в течение 24 ч.

Кристаллизация

Образование кристаллов из паров, растворов, расплавов, вещества в твёрдом состоянии (аморфном или другом кристаллическом), в процессе электролиза и при химических реакциях. К. приводит к образованию минералов. К. воды играет важную роль в атмосферных и почвенных явлениях. К. лежит в основе металлургии, получения полупроводниковых, оптических, пьезоэлектрических и др. материалов, плёнок для микроэлектроники, металлических покрытий, широко используется в химической, пищевой, медицинской промышленности (очистка веществ, производство удобрений, соли, сахара, химикалиев, лекарств).

Условия К. Если кристалл не плавится, не растворяется, не испаряется и не растет, то он находится в термодинамическом равновесии с маточной средой (расплавом, раствором или паром). Равновесие кристалла с расплавом того же вещества возможно лишь при температуре плавления Тпл, а равновесие с раствором и паром - если последние насыщены. Пересыщение или переохлаждение среды - необходимое условие для роста погруженного в неё кристалла, причём скорость роста кристалла тем больше, чем больше отклонение от равновесия.

К. - фазовый переход вещества из состояния переохлажденной (пересыщенной) маточной среды в кристаллическое соединение с меньшей энергией. Избыточная энергия выделяется при К. в виде скрытой теплоты К. Часть этой теплоты может превращаться в механическую работу; например, растущий кристалл может поднимать положенный на него груз, развивая кристаллизационное давление порядка десятков кГ/см2. В частности, кристаллы солей, образующиеся в порах бетонных плотин в морской воде, могут вызывать разрушение бетона.

Выделение скрытой теплоты К. ведёт к нагреванию расплава, уменьшению переохлаждения и замедлению К., которая заканчивается исчерпанием вещества или достижением равновесных значений температуры, концентрации и давления.

Зародыши К. Переохлажденная среда может долго сохранять, не кристаллизуясь, неустойчивое метастабильное состояние (например, мелкие, диаметром 0,1 мм капли хорошо очищенных металлов можно переохладить до температуры ~ 0,8 Тпл). Однако при достижении некоторого предельного для данных условий критического переохлаждения в жидкости или паре почти мгновенно возникает множество мелких кристалликов (зародышей). Происходит спонтанная К. Возникшие кристаллики растут и, т. к. переохлаждение уменьшается, новые зародыши, как правило, больше не возникают. Критическое переохлаждение зависит от температуры, концентрации, состава среды, её объёма, от присутствия посторонних частиц (например, пылинок, на которых образуются зародыши, кристалликов др. веществ и т. п.), от материала и состояния поверхности стенок сосуда, от интенсивности перемешивания, действия излучений и ультразвука.

При зарождении атомы или молекулы кристаллизующегося вещества объединяются в кристаллические агрегаты. Объединение частиц в агрегат уменьшает свободную энергию системы, а появление новой поверхности - увеличивает. Чем меньше агрегат, тем большая доля его частиц лежит на поверхности, тем больше роль поверхностной энергии. Поэтому с увеличением размера r агрегата работа А, требующаяся для его образования, вначале увеличивается, а затем падает (см. рис.1)

Зависимость работы А, требующейся для образования кристаллического агрегата, от размера r зародыша

Рис. 1 Зависимость работы А, требующейся для образования кристаллического агрегата, от размера r зародыша

Агрегат, для которого работа образования максимальна, называется критическим зародышем (rкр). Чем меньше работа образования зародыша, тем вероятнее его появление. С этим связано преимущественное зарождение на посторонних частицах (в особенности заряженных), на поверхностях твёрдых тел и на их дефектах. Такое зарождение называется гетерогенным. При К. на поверхности твёрдого тела зарождение происходит преимущественно на неоднородностях поверхности. При этом кристаллики «декорируют» дефекты и неоднородности. Гомогенное зарождение в объёме чистой жидкости возможно лишь при очень глубоких переохлаждениях. С понижением температуры и с ростом переохлаждения уменьшается работа образования зародыша, но одновременно падает и вязкость жидкости, а с нею и частота присоединения новых частиц к кристаллическим агрегатам. Поэтому зависимость скорости зарождения от температуры имеет максимум (см. рис.2). При низких температурах подвижность частиц жидкости столь мала, что расплав твердеет, оставаясь аморфным, - возникает стекло.

Сплошная кривая - зависимость числа зародышей кристаллов глицерина

Рис. 2 Сплошная кривая - зависимость числа зародышей кристаллов глицерина, возникающих в 1 см3 расплава в единицу времени, от температуры; пунктирная кривая - то же для 1,2 см3 расплава пиперина

Выращивание крупных совершенных монокристаллов часто ведут из метастабильных растворов и расплавов, вводя в них небольшие затравочные кристаллы и избегая самопроизвольного зарождения. Наоборот, в металлургических процессах стремятся иметь максимальное число зародышей.

Эпитаксия. Кристаллы, возникающие на поверхностях др. кристаллов, ориентированы относительно них закономерно. Например, при К. Au (из атомарного пучка) на поверхности кристалла NaCl кристаллики Au ориентированы параллельно грани NaCl либо гранями куба, либо гранями октаэдра. Явление ориентированного нарастания называется эпитаксией Эпитаксия из газовой фазы происходит, если температура подложки выше некоторой критической (если температура ниже, то кристаллики ориентированы хаотично) и сильно зависит от чистоты и дефектности подложки, состава окружающей среды, а также от предварительного облучения подложки электронами или рентгеновскими лучами. Подложка ориентирует кристаллики даже через тонкие (~1000ъ) плёнки угля, поливинилхлорида, окиси цинка, селена, если последние нанесены не в сверхвысоком вакууме.

Эпитаксия используется для получения монокристаллических плёнок, применяемых, в частности, в микроэлектронике. При этом на монокристальной подложке образуются отдельные, одинаково ориентированные кристаллики, которые затем срастаются в сплошную плёнку. Чистота и совершенство подложки сильно влияют на качество плёнки и её структуру. Дефекты плёнки возникают на примесях, а также в местах срастания отдельных кристалликов.

Рост кристаллов. Из слабо переохлажденных паров, растворов и реже расплавов кристаллы растут в форме многогранников. Их наиболее развитые грани обычно имеют простые кристаллографические индексы, например для алмаза это грани куба и октаэдра. Взаимная ориентация граней, как правило, такова, что размер каждой из них тем больше, чем меньше её скорость роста. Т. к. скорость роста увеличивается с переохлаждением по-разному для разных граней, то с изменением переохлаждения меняется и облик (габитус) кристалла. Рост простых кристаллографических граней идёт послойно, так что края незавершённых слоев - ступени - движутся при росте вдоль грани. Высота ступени, т. е. толщина откладывающегося слоя, колеблется от долей мм до нескольких ъ. На тонких двупреломляющих кристаллических пластинках ступени наблюдаются в поляризованном свете как границы областей различной окраски (см. рис. 3). Тонкие ступени наблюдают методом декорирования, а высокие ступени - непосредственно, с помощью оптического или электронного микроскопов. Тонкие ступени движутся при росте быстрее толстых, догоняют их и сливаются с ними. В свою очередь, высокие ступени расщепляются на более низкие. Формирующаяся т. о. ступенчатая структура поверхности сильно зависит от условий роста (температуры, пересыщения, состава среды) и влияет на совершенство формы кристалла. Например, появление на кристаллах сахарозы высоких ступеней ведёт к захвату капелек маточного раствора и растрескиванию кристаллов.

Пластинчатый кристалл паратолуидина в поляризованном свете

Рис. 3 Пластинчатый кристалл паратолуидина в поляризованном свете; каждая линия - ступень на поверхности кристалла. По разные стороны от ступени толщина кристалла, а следовательно, и интенсивность прошедшего света и окраска (в скрещенных николях) различны

Если кристалл содержит винтовую дислокацию, то его атомные слои подобны этажам гаража с винтовым выездом в середине. Надстройка такого кристалла происходит присоединением атомов к торцу последней ступени (см. рис. 4,а). В результате кристаллический слой растет, непрерывно накручиваясь сам на себя, надстраивая дислокацию, а ступень в процессе роста принимает форму спирали (см. рис.4,а,в,с). Дислокация обеспечивает при малых переохлаждениях квадратичную зависимость скорости роста грани от переохлаждения (пересыщения), т. е. заметную скорость роста уже при малых отклонениях от равновесия.

Рост кристалла

Рис. 4 а - схема роста кристалла на винтовой дислокации; б - спиральный рост на грани (100) синтетического алмаза; в - форма ступени при спиральном росте

В случае бездислокационного кристалла отложению каждого нового слоя должно предшествовать его зарождение. При малых пересыщениях новые слои зарождаются лишь около дефектов поверхности, а при больших отклонениях от равновесия и на совершенных кристаллах зарождение слоев возможно в любых точках поверхности. При больших отклонениях от равновесия как зародышевый, так и дислокационный механизмы создают высокую плотность ступеней, а скорость роста увеличивается с переохлаждением линейно.

Ступени, расходящиеся по грани от уколов, царапин, а при больших пересыщениях от вершин кристалла, образуют холмики роста. Поверхность растущей грани целиком состоит из них. Склоны холмиков отклонены от грани на углы порядка нескольких градусов, причём тем меньше, чем меньше пересыщение.

Из расплава кристаллы (например, для большинства металлов) часто растут не огранёнными, а округлыми. Округлые поверхности растут не послойно (тангенциально), а нормально, когда присоединение новых частиц к кристаллу происходит практически в любой точке его поверхности.

Поверхности кристаллов, растущих послойно, являются атомно гладкими. Это означает, что основная масса возможных атомных положений в слое занята (см. рис. 5)

Характерные положения атома на атомно гладкой поверхности кристалла со ступенями

Рис. 5 Характерные положения атома на атомно гладкой поверхности кристалла со ступенями: 1 - в торце ступени; 2 - адсорбция на ступени; 3 - в изломе; 4 - адсорбция на поверхности; 5 - в поверхностном слое кристалла; 6 - двумерный зародыш на атомно гладкой грани

Поверхности, растущие нормально, в атомном масштабе являются шероховатыми. В них количество вакансии и атомов, адсорбированных на поверхности и занимающих отдельные места, подлежащие заполнению в следующем слое, соизмеримо с полным числом возможных атомных положений (см. рис.6). Атомно шероховатые поверхности, а часто и торцы ступеней на атомно гладких поверхностях содержат множество изломов. На изломах атомы могут переходить в кристаллическую фазу поодиночке, не объединяясь в агрегаты и потому не преодолевая связанных с этой коллективностью потенциальных барьеров. Поэтому рост шероховатой поверхности и ступеней обусловлен главным образом присоединением отдельных частиц к изломам. В результате скорости роста шероховатых поверхностей почти одинаковы во всех направлениях и форма растущего кристалла - округлая, а атомно гладкие поверхности растут послойно.

Атомно шероховатая поверхность

Рис. 6 Атомно шероховатая поверхность

Заполнение каждого нового атомного места в кристалле происходит не сразу, а после многочисленных «проб и ошибок» - присоединений и отрывов атомов или молекул. Характерное число попыток на одно «прочное», необратимое присоединение тем больше, чем меньше отклонение от равновесия. Вероятность появления дефектов при К. падает с ростом числа попыток, т. е. уменьшением пересыщения. Частицы кристаллизующегося вещества поступают к изломам из раствора за счёт диффузии, а при послойном росте из паров - также из адсорбционного слоя благодаря диффузии по поверхности. Скорость роста кристалла из растворов определяется степенью лёгкости отделения строительной частицы от молекул или ионов растворителя и пристройки их к изломам. Скорость роста из расплавов обусловлена лёгкостью изменения относительных положений соседних частиц жидкости, т. е. её вязкостью.

Формы роста кристаллов. Простейшая форма роста - многогранник, причём размеры граней сильно зависят от условий роста. Отсюда пластинчатые, игольчатые и др. формы кристаллов. При росте больших огранённых кристаллов из неподвижного раствора пересыщение выше у вершин и рёбер кристалла и меньше в центральных частях грани. Поэтому вершины становятся ведущими источниками слоев роста. Если пересыщение над центральными участками граней достаточно мало, то грань уже не может больше расти, и вершины обгоняют центры граней. В результате возникают скелетные формы кристаллов (см. рис. 7). Поэтому совершенные кристаллы выращивают из хорошо перемешиваемых растворов и расплавов.

Скелетный кристалл шпинели

Рис. 7 Скелетный кристалл шпинели

Примесь, содержащаяся в маточной среде, входит в состав кристалла. Отношение концентрации примеси в кристалле и в среде называется коэффициентом распределения примеси. Захват примеси зависит от скорости роста. Разные грани захватывают при К. разные количества примесей. Поэтому кристалл оказывается как бы сложенным из пирамид, имеющих своими основаниями грани кристалла и сходящимися своими вершинами к его центру (см. рис.8). Такой секториальный захват примеси вызван различным строением разных граней.

Зонарное и секториальное строение кристалла алюмокалиевых квасцов

Рис. 8 Зонарное и секториальное строение кристалла алюмокалиевых квасцов

Если кристалл плохо захватывает примесь, то избыток её скапливается перед фронтом роста и растёт. Обогащенный примесью пограничный слой, из которого идёт К., не успевает перестраиваться, в результате чего возникает зонарная структура (полосы на рис.8). Аналогичная картина возникает, если кристалл обогащается примесью, а пограничный слой обедняется.

При росте кристаллов в достаточно больших объёмах (десятки, сотни см3 и более) перемешивание растворов и расплавов возникает самопроизвольно. В случае раствора слой жидкости вблизи скоро растущих граней обедняется веществом, его плотность уменьшается, что приводит к перемещению вещества вверх (концентрационные потоки). По-разному омывая различные грани, концентрационные потоки изменяют скорости роста граней и облик кристалла. В расплаве из-за нагревания примыкающей к растущему кристаллу жидкости скрытой теплотой К. возникают конвекционные потоки. Скорость, температура и концентрация примесей в конвекционных потоках хаотически колеблются около средних значений. Соответственно меняются скорость роста и состав растущего кристалла, в теле которого остаются «отпечатки» последовательных положений фронта К. Образуется зонарная структура кристалла. В металлических расплавах магнитное поле останавливает конвекцию и уничтожает зонарность.

Если расплав перед фронтом роста переохлажден, то выступ, случайно возникший на поверхности, попадает в область большего переохлаждения, скорость роста его вершины увеличивается ещё больше и т. д. В результате плоский фронт роста разбивается на округлые купола, имеющие в плоскости фронта форму полос или шестиугольников,- возникает ячеистая структура (см. рис. 9.,а). Линии сопряжения ячеек (канавки) оставляют в теле растущего кристалла дефектные и обогащенные примесью слои, так что весь кристалл оказывается как бы сложенным из гексагональных палочек или пластинок (карандашная структура (см. рис.9.,б)

Структура кристалла: а - ячеистая; б - карандашная

Рис. 9 Структура кристалла: а - ячеистая; б - карандашная.

Если в переохлажденном расплаве (растворе) оказывается не плоская поверхность, а маленький кристалл, то выступы на нём развиваются в различных кристаллографических направлениях, отвечающих максимальной скорости роста, и образуют многолучевую звезду. Затем на этих главных отростках появляются боковые ветви, на них - ветви следующего порядка, - возникает дендритная форма кристаллов (см. рис. 10). Несмотря на причудливую древовидную форму, кристаллографическая ориентация дендритного кристалла одинакова для всех его ветвей. Необходимые условия для развития дендритов у кристаллов, растущих послойно, - большое переохлаждение и плохое перемешивание.

Структура кристалла: а - ячеистая; б - карандашная

Рис. 10 Начальная стадия дендритного роста кристалла иодоформа

При очень малых скоростях роста кристалла из расплава коэффициент распределения вещества перестаёт зависеть от направления и скорости роста и приближаются к равновесному значению, определяемому диаграммой состояния.

Образование дефектов при К. Реальные кристаллы всегда имеют неоднородное распределение примеси (секториальная, зонарная, карандашная структуры). Примесь меняет параметр решётки, и на границах областей разного состава возникают внутренние напряжения. Это приводит к образованию дислокаций и трещин. Дислокации при К. из расплава возникают и как результат упругих напряжений в неравномерно нагретом кристалле, а также при нарастании более горячих новых слоев на более холодную поверхность. Дислокации могут «наследоваться», переходя из затравки в выращиваемый кристалл.

Посторонние газы, хорошо растворимые в маточной среде, но плохо захватываемые растущим кристаллом, образуют на фронте роста пузырьки, которые захватываются кристаллом, если скорость роста превосходит некоторую критическую. Так же захватываются и посторонние твёрдые частицы из маточной среды, становящиеся затем в кристалле источниками внутренних напряжений.

Массовая К. - одновременный рост множества кристаллов - широко используется в промышленности. Для получения кристаллов примерно одинаковой величины и формы используются мельчайшие (~0,1 мм) затравочные кристаллы; процесс ведётся в той области температур, где новые зародыши самопроизвольно не возникают.

Спонтанное массовое появление зародышей и их рост происходят при затвердевании отливок металлов. Кристаллы зарождаются прежде всего на охлаждаемых стенках изложницы, куда заливается перегретый металл. Зародыши на стенках ориентированы хаотично, однако в процессе роста «выживают» те из них, у которых направление максимальной скорости роста перпендикулярно к стенке. В результате у поверхности возникает столбчатая зона, состоящая из почти параллельных узких кристаллов, вытянутых вдоль нормали к поверхности. Конвекционные потоки в расплаве могут обламывать ветви дендритов, поставляя новые затравки. Аналогично действует ультразвук, а также добавление порошков, частицы которых служат центрами К., и поверхностно-активных веществ, облегчающих образование зародышей.

Лит.: Шубников А. В., Как растут кристаллы, М.- Л., 1935; его же. Образование кристаллов, М.- Л., 1947; Леммлейн Г. Г., Секториальное строение кристаллов, М.- Л., 1948; Кузнецов В. Д., Кристаллы и кристаллизация, М., 1953; Маллин Д ж., Кристаллизация, пер. с англ., М., 1965; Хонигман Б., Рост и форма кристаллов, пер. с нем., М., 1961; Чернов А. А., Слоисто-спиральный рост кристаллов, «Успехи физических наук», 1961, т. 73, в. 2, с. 277; его же, Рост цепей сополимеров и смешанных кристаллов - статистика проб и ошибок, там же, 1970, т. 100, в. 2, с. 277; Матусевич Л. Н., Кристаллизация из растворов в химической промышленности, М., 1968; Палатник Л. С., Папиров И. И., Эпитаксиальные пленки, М., 1971.

А. А. Чернов

Кристаллит

Монокристалл неправильной формы, не имеющий характерной кристалл. огранки. К К. относят дендриты, зерна кристалл. металлических слитков, горных пород, минералов и т.д.

Кристаллическая решётка

Присущее веществу в кристаллическом состоянии правильное расположение атомов (ионов, молекул), характеризующееся периодической повторяемостью в трёх измерениях. Ввиду такой периодичности для описания К. р. достаточно знать размещение атомов в элементарной ячейке, повторением которой путём параллельных дискретных переносов (трансляций) образуется вся структура кристалла. В соответствии с симметрией кристалла элементарная ячейка имеет форму косоугольного или прямоугольного параллелепипеда, квадратной или шестиугольной призмы, куба (см. рис. 1). Размеры рёбер элементарной ячейки а, b, с называются периодами идентичности.

Кристаллическая решётка, у которой элементарная ячейка - параллелепипед с ребрами а, b, с и углами между ними a, b, g

Рис. 1 Кристаллическая решётка, у которой элементарная ячейка - параллелепипед с ребрами а, b, с и углами между ними a, b, g

Математической схемой К. р., в которой остаются лишь геометрические параметры переносов, но не указывается конкретное размещение атомов в данной структуре, является пространственная решётка. В ней система трансляций, присущих данной К. р., изображается в виде системы точек - узлов. Существует 14 различающихся по симметрии пространственных трансляционных решёток, называемых Браве решётками. К. р. может иметь и дополнительные элементы симметрии - оси, плоскости, центр симметрии. Всего существует 230 пространственных групп симметрии, причём подгруппой, определяющей К. р., обязательно является соответствующая группа переносов.

Существованием К. р. объясняются анизотропия свойств кристаллов, плоская форма их граней, постоянство углов и др. законы геометрической кристаллографии. Геометрическое измерение кристалла даёт величины углов элементарной ячейки и на основании закона рациональности параметров отношение периодов идентичности. Определение размеров ячеек и размещения в них атомов или молекул, составляющих данную структуру, производится с помощью рентгенографии, нейтронографии или электронографии.

В элементарной ячейке К. р. может размещаться от одного (для химических элементов) до десятков и сотен (для химических соединений) или тысяч и даже миллионов (белки, вирусы) атомов, в соответствии с чем периоды идентичности составляют от нескольких ъ до сотен и тысяч ъ. При этом любому атому в данной ячейке соответствует трансляционно равный ему атом в каждой др. ячейке кристалла.

Иногда, если количество атомов того или иного сорта в ячейке невелико и они различаются каким-либо дополнительным качеством, например определенной ориентацией магнитного момента, в физике твёрдого тела для их описания вводят понятие подрешёток данной К. р.

Существование К.р. объясняется тем, что равновесие сил притяжения и отталкивания между атомами, дающее минимум потенциальной энергии всей системы, достигается именно при условии трёхмерной периодичности. В простейших случаях это можно интерпретировать геометрически как следствие укладки в кристалле атомов, молекул наиболее плотно друг к другу.

Представление об атомистичности, прерывности К. р. односторонне. В действительности электронные оболочки атомов, объединённых в К. р. химическими связями, перекрываются. Это позволяет рассматривать К. р. как непрерывное периодическое распределение отрицательного заряда, имеющее максимумы около дискретно расположенных ядер.

К. р. не является статическим образованием. Атомы или молекулы, образующие К. р., колеблются около положений равновесия, причём характер колебаний (динамика К. р.) зависит от симметрии, координации атомов, энергии связи. Известны случаи вращения молекул в К. р. С повышением температуры колебания частиц усиливаются, что приводит к разрушению К. р. и переходу вещества в жидкое состояние.

Реальная структура кристалла всегда отличается от идеальной схемы, описываемой понятием К. р., поскольку, помимо всегда имеющих место тепловых колебаний атомов, трансляционно «равные» атомы могут в действительности отличаться по атомному номеру (изоморфизм), по массе ядра (изотонический изоморфизм). Кроме того, в реальном кристалле всегда имеются различного рода дефекты: примесные атомы, вакансии, дислокации и т. д. (см.Дефекты в кристаллах).

Лит.: Шубников А. В.. Флинт Е. Е., Бокий Г. Б., Основы кристаллографии, М.- Л., 1940; Делоне Б. Н., Александров А., Математические основы структурного анализа кристаллов..., Л.- М., 1934; Белов Н. В., Структура ионных кристаллов и металлических фаз, М., 1947.

Б. К. Вайнштейн, А. А. Гусев

Кристаллография

От кристаллы и ...графия.

Наука о кристаллах и кристаллическом состоянии вещества. Изучает симметрию, строение, образование и свойства кристаллов. К. зародилась в древности в связи с наблюдениями над природными кристаллами, имеющими естественную форму правильных многогранников. К. как самостоятельная наука существует с середины 18 в. В 18-19 вв. К. развивалась в тесной связи с минералогией как дисциплина, устанавливающая закономерности огранки кристаллов (Р. Аюи, 1784). Была развита теория симметрии кристаллов - их внешних форм (А. В. Гадолин, 1867) и внутреннего пространственного строения (Е. С. Федоров, 1890; А. Шёнфлис, 1891). Совокупность методов описания кристаллов и установленные закономерности составляют содержание геометрической К.

На основе геометрической К. возникла гипотеза об упорядоченном, трёхмерно-периодическом расположении в кристалле составляющих его частиц, в современном понимании - атомов и молекул, которые образуют кристаллическую решётку. Открытие дифракции рентгеновских лучей в кристаллах экспериментально подтвердило их периодическое решётчатое строение. Первые конкретные рентгенографические расшифровки атомной структуры кристаллов (NaCl, алмаз, ZnS и др.) были осуществлены начиная с 1913 У. Г. Брэггом и У. Л. Брэггом. Изучение прохождения света через кристаллы позволило сформулировать закономерности анизотропии (неравноценности по направлениям) свойств кристаллов.

Крупный вклад в изучение атомной структуры кристаллов сделан Л. Полингом, Д. Кроуфут-Ходжкин, Н. В. Беловым, А. Гинье; в исследование роста кристаллов и их физических свойств - В. Фохтом. И. Н. Странским, А. В.Шубниковым, И. В. Обреимовым.

Современная К. развивается как одна из областей физики, тесно связанная с химией и минералогией и имеющая широкое техническое применение. Основами её математического аппарата являются теория групп симметрии кристаллов и тензорное исчисление.

Существует Международный союз кристаллографов, органом которого является журнал «Acta Crystallographica». Союз кристаллографов с 1940 издал более 30 томов «Структурного справочника» («Structure Report»). В СССР издаётся журнал «Кристаллография».

Структурная К. исследует атомно-молекулярное строение кристаллов с помощью рентгеноструктурного анализа, электронографии, нейтронографии, опирающихся на теорию дифракции волн в кристаллах. Используются также методы оптической спектроскопии, в том числе инфракрасной спектроскопии, ядерного магнитного резонанса, электронного парамагнитного резонанса и т. д. Изучена кристаллическая структура более 20 тыс. химических веществ. Законы взаимного расположения атомов и химической связи между ними в кристаллах, их изоморфизма и полиморфизма являются предметом кристаллохимии. Изучение биологических кристаллов позволило определить структуру гигантских молекул белков и нуклеиновых кислот и явилось важным вкладом К. в молекулярную биологию.

Важный раздел К. - теория и экспериментальные исследования процессов зарождения и роста кристаллов. Здесь К. использует общие принципы термодинамики и закономерности фазовых переходов и поверхностных явлений с учётом взаимодействия кристалла со средой, анизотропии свойств и атомно-молекулярной структуры кристаллического вещества (см. Кристаллизация). Как самостоятельный раздел развивается К. реального кристалла, изучающая разнообразные нарушения идеальной кристаллической решётки - точечные дефекты, дислокации и др. дефекты в кристаллах, возникающие при росте кристаллов или разнообразных воздействиях на них и определяющие многие их свойства.

Исследования механических, оптических, электрических и магнитных свойств кристаллов являются предметом кристаллофизики, которая смыкает К. с физикой твёрдого тела. Для кристаллофизики существенным является рассмотрение свойств кристалла в связи с его симметрией и изменений свойств при внешних воздействиях. Уникальность свойств многих кристаллов и их чувствительность к механическим и акустическим воздействиям, изменениям температуры, чувствительность к электрическому току, электромагнитным полям, различным излучениям и т. п. дали кристаллографическим исследованиям широкий выход в радиотехнику, полупроводниковую электронику и квантовую электронику, техническую оптику и акустику, обработку материалов, приборостроение. В связи с этим возникло и интенсивно развивается производство синтетических кристаллов - кварца, алмаза, германия, кремния, рубина и др.

К. изучает также строение и свойства разнообразных агрегатов из микрокристаллов - поликристаллов, текстур, керамик, а также веществ с атомной упорядоченностью, близкой к кристаллической - жидких кристаллов, полимеров. Симметрийные и структурные закономерности, изучаемые К., находят применение в рассмотрении общих закономерностей строения и свойств конденсированного состояния вещества вообще: аморфных тел и жидкостей, полимеров, биологических макромолекул, надмолекулярных структур и т. п. (обобщённая К.).

Лит.: Шубников А. В., Флинт Е. Е., Бокий Г. Б., Основы кристаллографии, М.- Л., 1940; Попов Г. М., Шафрановский И. И., Кристаллография, 4 изд., М., 1964; Белов Н. В., Структурная кристаллография, М., 1951; Бернал Дж. Д., Карлайл С. Х., Поля охвата обобщённой кристаллографии. (Обзор). «Кристаллография», 1968, т. 13, № 5; Вайнштейн Б. К., Кристаллография и научно-технический прогресс, там же, 1971, т. 16, в. 2, с. 261.

М. П. Шаскольская