Четверг, 4 Июль 2024, 04:23

Сайт: Система поддержки учебных курсов НИ РХТУ
Курс: Электронная библиотека (Электронная библиотека)
Глоссарий: Терминологический словарь

Кобальт

Лат. Cobaltum.

Со - химический элемент первой триады VIII группы периодической системы Менделеева; атомный номер 27, атомная масса 58,9332; тяжёлый металл серебристого цвета с розоватым отливом. В природе элемент представлен одним устойчивым изотопом 59Со; из полученных искусственно радиоактивных изотопов важнейший 60Со.

Историческая справка. Окись К. применялась в Древнем Египте, Вавилоне, Китае для окрашивания стекол и эмалей в синий цвет. Для той же цели в 16 в. в Западной Европе стали пользоваться цафрой, или сафлором, - серой землистой массой, которая получалась при обжиге некоторых руд, носивших название «кобольд». Эти руды выделяли при обжиге обильный ядовитый дым, а из продукта их обжига выплавить металл не удавалось. Средневековые рудокопы и металлурги считали это проделками мифических существ - кобольдов (от нем. Kobold - домовой, гном). В 1735 шведский химик Г. Брандт, нагревая в горне с дутьём смесь цафры с углем и флюсом, получил металл, который назвал «корольком кобольда». Вскоре это название было изменено на «кобольт», а затем на «кобальт».

Распространение в природе. Содержание К. в литосфере 1,8·10-3% по массе. В земной коре он мигрирует в магмах, горячих и холодных водах. При магматической дифференциации К. накапливается главным образом в верхней мантии: его среднее содержание в ультраосновных породах 2·10-2%. С магматическими процессами связано образование так называемых ликвационных месторождений кобальтовых руд. Концентрируясь из горячих подземных вод, К. образует гидротермальные месторождения; в них Со связан с Ni, As, S, Cu. Известно около 30 минералов К.

В биосфере К. преимущественно рассеивается, однако на участках, где есть растения - концентраторы К., образуются кобальтовые месторождения. В верхней части земной коры наблюдается резкая дифференциация К. - в глинах и сланцах в среднем содержится 2·10-3% К., в песчаниках 3·10-5, в известняках 1·10-5. Наиболее бедны К. песчаные почвы лесных районов. В поверхностных водах К. мало, в Мировом океане его лишь 5·10-8%. Будучи слабым водным мигрантом, К. легко переходит в осадки, адсорбируясь гидроокисями марганца, глинами и др. высокодисперсными минералами.

Физические и химические свойства. При обычной температуре и до 417°С кристаллическая решётка К. гексагональная плотноупакованная (с периодами а = 2,5017 ancstrem.jpg, с = 4,614 ancstrem.jpg), выше этой температуры решётка К. кубическая гранецентрированная (а = 3,5370 ancstrem.jpg ). Атомный радиус 1,25 ancstrem.jpg, ионные радиусы Co2+0,78 ancstrem.jpg и Co3+0,64 ancstrem.jpg. Плотность 8,9 г/см3 (при 20°С): t 1493° Со, tкип 3100°С. Теплоёмкость 0,44 кдж/(кг·К), или 0,1056 кал/(г·°С); теплопроводность 69,08 вт/(м·К), или 165 кал/(см·сек·°С) при 0-100 °С. Удельное электросопротивление 5,68·10-8 ом·м, или 5,68·10-6 ом·см (при 0°С). К. ферромагнитен, причём сохраняет ферромагнетизм от низких температур до точки Кюри, Q= 1121 °С (см. Ферромагнетизм). Механические свойства К. зависят от способа механической и термической обработки. Предел прочности при растяжении 500 Мн/м2 (или 50 кгс/мм2) для кованого и отожжённого К.; 242- 260 Мн/м2 для литого; 700 Мн/м2 для проволоки. Твёрдость по Бринеллю 2,8 Гн/м2 (или 280 кгс/мм2) для наклёпанного металла, 3,0 Гн/м2 для осажденного электролизом; 1,2-1,3 Гн/м2 для отожжённого.

Конфигурация внешних электронных оболочек атома К. 3d74s2. В соединениях К. проявляет переменную валентность. В простых соединениях наиболее устойчив Со (II), в комплексных - Со (III). Для Со (I) и Co (IV) получены только немногочисленные комплексные соединения. При обыкновенной температуре компактный К. стоек против действия воды и воздуха. Мелко раздробленный К., полученный восстановлением его окиси водородом при 250 °С (пирофорный К.), на воздухе самовоспламеняется, превращаясь в СоО. Компактный К. начинает окисляться на воздухе выше 300 °С; при красном калении он разлагает водяной пар: Со + H2O = CoO + H2. С галогенами К. легко соединяется при нагревании, образуя галогениды СоХ2. При нагревании К. взаимодействует с S, Se, Р, As, Sb, С, Si, В, причём состав получающихся соединений иногда не удовлетворяет указанным выше валентным состояниям (например, Со2Р, Co2As, CoSb2, Со3С, CoSi3). В разбавленных соляной и серной кислотах К. медленно растворяется с выделением водорода и образованием соответственно хлорида CoCl2 и сульфата CoSO4. Разбавленная азотная кислота растворяет К. с выделением окислов азота и образованием нитрата Co (NO3)2. Концентрированная HNO3 пассивирует К. (см. Пассивирование металлов). Названные соли Со (II) хорошо растворимы в воде [при 25 °С 100 г воды растворяют 52,4 г CoCl2, 39,3 г CoSO4, 136,4 г. Со (NO3)2]. Едкие щёлочи осаждают из растворов солей Со2+ синюю гидроокись Со (ОН)2, которая постепенно буреет вследствие окисления кислородом воздуха до Со (ОН)3. Нагревание в кислороде при 400-500 °С переводит CoO в чёрную закись-окись Co3O4, или CoO·Co2O3 - соединение типа шпинели. Соединение того же типа CoAl2O4 или CoAl2O3 синего цвета (тенарова синь, открытая в 1804 Л. Ж. Тенаром) получается при прокаливании смеси CoO и Al2O3 при температуре около 1000 °С.

Из простых соединений Со (III) известны лишь немногие. При действии фтора на порошок Со или CoCl2 при 300-400 °С образуется коричневый фторид CoF3. Комплексные соединения Со (III) весьма устойчивы и получаются легко. Например, KNO2 осаждает из растворов солей Со (II), содержащих CH3COOH, жёлтый труднорастворимый гексанитрокобальтат (III) калия K3[Co (NO2)6]. Весьма многочисленны кобальтаммины (прежнее название кобальтиаки) - комплексные соединения Со (III), содержащие аммиак или некоторые органические амины.

Получение и применение. Минералы К. редки и не образуют значительных рудных скоплений. Главным источником промышленного получения К. служат руды никеля, содержащие К. как примесь. Переработка этих руд весьма сложна, и её способ зависит от состава руды. В конечном итоге получают раствор хлоридов К. и никеля, содержащий примеси Cu2+, Pb2+, Bi3+. Действием H2S осаждают сульфиды Cu, Pb, Bi, после чего пропусканием хлора переводят Fe (II) в Fe (lll) и добавлением СаСО3 осаждают Fe (OH)3 и CaHAsO4. От никеля К. отделяют по реакции: 2CoCl2+NaCIO+4NaOH+H2O = 2Co (OH)3Ї+5NaCI. Почти весь никель остаётся в растворе. Чёрный осадок Со (ОН)3 прокаливают для удаления воды; полученный окисел Co3O4 восстанавливают водородом или углеродом. Металлический К., содержащий до 2-3% примесей (Ni, Fе, Cu и др.), может быть очищен электролизом.

К. применяется главным образом в виде сплавов; таковы кобальтовые сплавы, а также сплавы на основе др. металлов, где К. служит легирующим элементом. Сплавы К. используют в качестве жаропрочных и жаростойких материалов, при изготовлении постоянных магнитов, режущего инструмента и др. Порошкообразный К., а также Co3O4 служат катализаторами. Фторид CoF3 применяется как сильный фторирующий агент, тенарова синь и особенно силикат К. и калия - как краски в керамической и стекольной промышленности. Соли К. применяют в сельском хозяйстве как микроудобрения, а также для подкормки животных.

С. А. Погодин

Из искусственно радиоактивных изотопов К. наибольшее значение имеет 60Со с периодом полураспада T1/2 = 5,27 года, широко используемый как гамма-излучатель. В технике его применяют для гамма-дефектоскопии. В медицине - главным образом при лучевой терапии опухолей и для стерилизации медикаментов. Он служит также для уничтожения насекомых в зерне и овощах и для консервирования пищевых продуктов. Др. радиоактивные изотопы - 56Co (T1/2 = 77 сут), 57Со (270 сут) и 58Со (72 сут) как менее опасные (небольшой период полураспада) используют в качестве изотопных индикаторов при исследовании обмена веществ, в частности для изучения распределения К. в организме животных (с помощью радиоактивного К. исследовали проницаемость плаценты и т.п.).

К. в организме. Постоянно присутствуя в тканях животных и растений, К. участвует в обменных процессах. В животном организме содержание К. зависит от его уровня в кормовых растениях и почвах. Концентрация К. в растениях пастбищ и лугов в среднем составляет 2,2·10-5-4,5·10-5% на сухое вещество. Способность к накоплению К. у бобовых выше, чем у злаковых и овощных растений. В связи с высокой способностью к концентрации К. морские водоросли по его содержанию мало отличаются от наземных растений, хотя в морской воде К. значительно меньше, чем в почвах. Суточная потребность человека в К. равна примерно 7-15 мкг и удовлетворяется за счёт его поступления с пищей. Потребность животных в К. зависит от их вида, возраста и продуктивности. Наиболее нуждаются в К. жвачные, которым он необходим для развития симбиотической микрофлоры в желудке (главным образом в рубце). Суточная потребность в К. у дойных коров составляет 7-20 мг, у овец - около 1 мг. При недостатке К. в рационе снижается продуктивность животных, нарушаются обмен веществ и кроветворение, у жвачных возникают эндемичные заболевания - акобальтозы. Биологическая активность К. определяется его участием в построении молекулы витамина B12 и его коферментных форм, фермента транскарбоксилазы. К. необходим для проявления активности ряда ферментов. Он влияет на обмен белка и синтез нуклеиновых кислот, на обмен углеводов и жиров, окислительно-восстановительные реакции в животном организме. К. - мощный активатор кроветворения и синтеза эритропоэтинов. К. участвует в ферментных системах клубеньковых бактерий, осуществляющих фиксацию атмосферного азота; стимулирует рост, развитие и продуктивность бобовых и растений ряда др. семейств.

Ю. И. Раецкая

Лит.: Перельман Ф. М., Кобальт, в кн.: Краткая химическая энциклопедия, т. 2, М., 1963; Некрасов Б. В., Основы общей химии, т. 3, М., 1970; Гудима Н. В., Металлургия кобальта, в кн.: Справочник металлурга по цветным металлам, т. 2, М., 1947; Ястребов А. П., Действие кобальта на образование эритроцитов, в кн.: Патофизиология эритропоэза (Тр. 7 конференции Уральского Межобластного общества патофизиологов), Свердловск, 1965; Ягодин Б. А., Кобальт в жизни растений, М., 1970; Trace element metabolism in animals. Proceedings of International symposium Aberdeen, Scotland, July 1969, Edin. - L., 1970; Northrop D. B., Transcarboxylase, «Journal of Biological Chemistry», 1969, v. 244, № 21, p. 5808-27.

Кобальтовые сплавы

Cплавы на основе кобальта; применяются главным образом для изготовления деталей, работающих при высоких температурах, например лопаток турбореактивных двигателей. Так называемые литейные К. с. - сплавы системы Со - Cr - С - Х, где X - W, Mo, Nb, Ni, имеют хорошие литейные свойства; в связи с тем, что упрочнение таких К. с. создаётся в основном карбидными фазами, они содержат 0,2-1,0% С. Добавка В улучшает литейные характеристики сплавов, но может ухудшить их свариваемость. К. с. имеют достаточно хорошее сопротивление термической усталости. Средний коэффициент термического расширения невысок (15,9-16,5)·10-6 1/°C в интервале температур 20-870 °С. Наиболее жаропрочные К. с. сохраняют работоспособность при температуре до 1100 °С, предел длительной прочности s1100100»70Мн/м2 (7 кгс/мм2). К. с. системы Со - Cr - Ni - Mn, содержащие до 50% Со (деформируемые К. с.), имеют высокое сопротивление термической усталости и удовлетворительно обрабатываются давлением. К. с. стеллиты (30% Cr, а также W, Si и С) применяют для наплавки на инструменты и детали машин (без последующей термической обработки) в целях повышения их сопротивления износу. В качестве основного или легирующего элемента кобальт входит в состав магнитных материалов.

Ковар

Сплав на основе железа, содержит 18% Со и 29% Ni. Характеризуется низким коэффициентом теплового расширения [(4,5-5,2)Ч10-6 1/°C - в интервале 20-400 °C], близким к коэффициенту теплового расширения стекла. Температура плавления К. 1450 °C, удельное электрическое сопротивление 0,5мком×м, температура Кюри 420 °С. Во влажной среде сплав подвержен коррозии, требует защитных покрытий. При впайке в стекло К. образует прочное вакуумно-плотное сцепление, что используется в электровакуумной технике при изготовлении корпусов и токовыводов различных ламп, приборов.

Ковка

Один из способов обработки металлов давлением, при котором инструмент оказывает многократное прерывистое воздействие на заготовку, в результате чего она, деформируясь, постепенно приобретает заданную форму и размеры (см. Кузнечно-штамповочное производство).

С древности К. (меди, самородного железа) служила одним из основных способов обработки металла (холодная, а затем и горячая К. в Иране, Месопотамии, Египте в 4-3 тысячелетии до н. э.; холодная К. у индейцев Северной и Южной Америки до 16 в. н. э.). Древние металлурги Европы, Азии и Африки ковали сыродутное железо, медь, серебро и золото; кузнецы пользовались особым почётом у народов древности, а их искусство окружалось легендами. В средние века, в том числе в России кузнечное дело достигло высокого уровня; вручную отковывались ручное и огнестрельное оружие, инструменты, детали сельскохозяйственных орудий, дверей и сундуков, решетки, светильники, замки, часы и другие изделия всевозможных форм и размеров, часто с тончайшими деталями; кованые изделия украшались насечкой, просечным или рельефным узором, расплющенными в тончайший слой листами сусального золота и бронзовой потали. Традиции средневекового ремесла сохранились в народном искусстве до 19 в. (светцы, крюки, подсвечники и т.д.). В 15-19 вв. выполнены многие замечательные кованые фонари, ограды, решётки, ворота (Версаль, Петербург, Царское Село). Многие города специализировались в различных отраслях кузнечного ремесла: Герат, Мосул славились утварью, Дамаск, Милан, Аугсбург, Астрахань, Тула - оружием, Ноттингем, Золинген, Павлово на Оке - ножами и инструментами, Нюрнберг, Холмогоры - замками и т.д. В 19 в. ручная художественная К. была вытеснена штамповкой и литьём, интерес к ней возродился в 20 в. (работы Ф. Кюна в ГДР, И. С. Ефимова, В. П. Смирнова в СССР; оформление общественных интерьеров в Таллине, Каунасе и др.).

Основы теории К. были разработаны в России: П. П.Аносов в 1831 впервые применил микроскоп для изучения структуры металлов; Д. К. Чернов в 1868 научно обосновал режимы К.; большой вклад в теорию К. сделали сов. учёные Н. С. Курнаков, К. Ф. Грачев, С. И. Губкин, К. Ф. Неймайер и др.

К., как правило, производят при нагреве металла до так называемой ковочной температуры с целью повышения его пластичности и снижения сопротивления деформированию. Температурный интервал К. зависит от химического состава и структуры обрабатываемого металла, а также от вида операции или перехода. Для стали температурный интервал 800-1100 °С., для алюминиевых сплавов - 420-480 °С.

Различают К. в штампах и без применения штампов - так называемую свободную К. При К. в штампах металл ограничен со всех сторон стенками рабочей полости штампа и при деформации приобретает форму, соответствующую этой полости (см.Штамповка, Ротационная ковка). При свободной К. (ручной и машинной) металл не ограничен совсем или ограничен с одной стороны. При ручной К. кувалдой или молотом воздействуют непосредственно на металл или на инструмент. Машинную К. выполняют на специальном оборудовании - молотах с массой падающих частей от 1 до 5000 кг или гидравлических прессах, развивающих усилия 2-200 Мн (200-20000 тс), а также на ковочных машинах. Изготовляют поковки массой 100 т и более. Для манипулирования тяжёлыми заготовками при К. используют подъёмные краны грузоподъёмностью до 350 т, кантователи и специальные манипуляторы. Сводную К. применяют также для улучшения качества и структуры металла. При проковке металл упрочняется, завариваются так называемые несплошности и размельчаются крупные кристаллы, в результате чего структура становится мелкозернистой, приобретает волокнистое строение.

При К. используют набор кузнечного инструмента, с помощью которого заготовкам придают требуемую форму и размеры. Основные операции ковки: осадка, высадка, протяжка, обкатка, раскатка, прошивка и др.

К. является одним из экономичных способов получения заготовок деталей. В массовом и крупносерийном производствах преимущественное применение имеет К. в штампах, а в мелкосерийном и единичном - свободная К.

Лит.: Обработка металлов давлением, М., 1961; Ковка и объемная штамповка стали. Справочник, под ред. М. В. Сторожева, 2 изд., т. 1, М., 1967.

Л. А. Никольский

Ковкость

Cпособность металлов и сплавов подвергаться ковке и др. видам обработки давлением (прокатка, волочение, прессование, штамповка). К. характеризуется двумя показателями — пластичностью, т. е. способностью металла подвергаться без разрушения деформации под давлением, и его сопротивлением деформации.

Ковкими являются большинство чистых металлов, сталь, латунь, дуралюмин и некоторые др. медные, алюминиевые, магниевые, никелевые и пр. сплавы. У ковких металлов относительно высокая пластичность сочетается с низким сопротивлением деформации.
Критерий ковкости имеет вид Формула. При К Ψ < 0,01 сплав не куется, 0,01<КΨ< 0,3 – ковкость низкая, при 0,3<КΨ< 0,8 – ковкость удовлетворительная, при 0,8<КΨ< 2 – ковкость хорошая, при КΨ > 2 – ковкость отличная.

Сафонов Б.П.

Ковочные машины

Группа машин для обработки металлов давлением - ковкой и штампованием. Основные виды К.м.: горизонтально-, вертикально- и ротационно-ковочные машины, ковочные вальцы.

Горизонтально-ковочные машины(движение рабочего органа горизонтальное) предназначены для горячего безоблойного штампования заготовок из прутка. Рабочий орган жестко связан с кривошипным механизмом, движение вспомогательных органов осуществляется рычажно-кулачковым механизмом. В отличие от горизонтально-ковочных машин и др. кривошипных машин, приводной вал вертикально- и ротационно-ковочных машин не связан жестко с ползуном, на котором укреплен рабочий инструмент. Вертикально-ковочные машины (рабочий инструмент перемещается вертикально) предназначены для получения мелких поковок - заготовок ножей, крючков, зубил (с нагревом их один раз) и более крупных изделий - заготовок ходовых винтов, топоров и др. с неоднократным нагревом их в процессе обработки. На этих машинах осуществляют основные операции ковки: протяжку, обжимку, обкатку и др. - последовательно. Особенностью конструкции вертикально-ковочных машин является передача вращения от эксцентрикового вала ползуну через промежуточную деталь - мотыль. Ползун постоянно прижат к мотылю пружинами, усилие которых преодолевается при рабочем ходе и под действием которых ползун возвращается в исходное положение после завершения рабочего хода. Машины могут иметь до 6 ползунов и производить 800 ударов в минуту. Ротационно-ковочные машины (рабочий орган совершает вращение вместе с инструментом) предназначены для обжимки и вытяжки изделий, имеющих обычно форму тел вращения (см. Ротационная ковка). Промежуточной деталью, передающей движение от приводного вала ползуну, является цилиндрическая обойма, по наружной окружности которой расположены ролики, а внутри - шпиндель с радиальными пазами. Ползуны со штампами находятся в пазах шпинделя. Ротационные К. м. могут быть двух типов: с неподвижной обоймой и вращающимся шпинделем и с неподвижным шпинделем и вращающейся обоймой. Машины с 10 роликами при частоте вращения шпинделя или обоймы 500 об/мин могут производить до 2500 ударов в минуту (кривошипный пресс-автомат производит до 700 ходов в минуту). Ковочные вальцы занимают промежуточное положение между кузнечными машинами и прокатными станами и позволяют повысить производительность в 10 раз по сравнению со штамповочными кузнечными машинами.

Широко распространены горизонтально-ковочные машины, как наиболее производительные и универсальные, позволяющие изготовлять разнообразные поковки сложной конфигурации с высокой точностью размеров и чистотой поверхности.

Лит.: Дин И. М., Изготовление поковок на специальных машинах, М. - Л., 1958; Залесский В. И., Оборудование кузнечно-прессовых цехов, М., 1964.

В. П. Линц

Когезия

От лат. cohaesus — связанный, сцепленный.

Сцепление молекул (атомов, ионов) физического тела под действием сил притяжения. Это силы межмолекулярного взаимодействия, водородной связи и (или) химической связи. Они определяют совокупность физических и физико-химических свойств вещества: агрегатное состояние, летучесть, растворимость, механические свойства и т.д. Интенсивность межмолекулярного и межатомного взаимодействия (а, следовательно, силы К.) резко убывает с расстоянием. Наиболее сильна К. в твердых телах и жидкостях, т. е. в конденсированных фазах, где расстояние между молекулами (атомами, ионами) малы — порядка нескольких . В газах средние расстояния между молекулами велики по сравнению с их размерами, и поэтому К. в них незначительна. Мерой интенсивности межмолекулярного взаимодействия служит плотность энергии когезии. Она эквивалентна работе удаления взаимно притягивающихся молекул или атомов на бесконечно большое расстояние друг от друга, что практически соответствует испарению или сублимации вещества.

Л.А. Шиц

Кокиль

От франц. coquille, буквально - раковина, скорлупа.

Металлическая литейная форма для получения отливок, преимущественно из цветных сплавов, а также чугуна и стали, к которым предъявляют определенные технологические требования (см. Литьё в кокиль). К. изготовляют из чугуна и стали, иногда из др. сплавов. Такие формы выдерживают до разрушения от 100 до 10 000 заливок в зависимости от массы заливаемого сплава и его свойств. Экономически целесообразно применять К. в серийном и массовом производстве. К. могут быть без разъёма, с одним или несколькими разъёмами в горизонтальной и вертикальной плоскостях (см. рис. 1) и с комбинированной плоскостью разъёма в зависимости от конфигурации отливки. Внешнюю поверхность отливки образуют гнёзда К., внутреннюю полость - песчаные и металлические литейные стержни. Для заполнения К. расплавом в плоскости разъёма или в песчаном стержне имеются каналы литниковой системы. Операции открывания и закрывания частей К. обычно механизированы - выполняются на специальных кокильных машинах. Для увеличения стойкости К. и уменьшения скорости охлаждения отливки на поверхность его рабочей части наносят специальные покрытия и краски. К., покрытые тонким слоем (до 0,5 мм) облицовочной смеси из мелкого песка, связующих материалов и воды, служат для получения отливок простой конфигурации с высокой поверхностной плотностью и герметичностью. Футерованные К., у которых покрыты формовочной смесью только специально подготовленные углубления, служат для изготовления крупных отливок из чугуна и стали массой несколько т.

Кокиль с разъёмом в вертикальной плоскости

Рис. 1 Кокиль с разъёмом в вертикальной плоскости: 1 и 2 - половины кокиля; 3 - гнёзда; 4 - литниковая система.

Лит.: Кокильное литье, М., 1967; Петриченко А. М., Теория и технология кокильного литья, [К., 1967].

Н. П. Дубинин

Кокильная машина

Машина литейного производства, позволяющая механизировать процесс получения отливок в кокилях. На К. м. механизированы операции открывания и закрывания частей кокиля, простановки и удаления стержней и выталкивания отливок из кокиля.

Типы К. м.: однопозиционные и многопозиционные.

Однопозиционные К. м. могут быть универсальные, на них кокили можно заменять и получать различные отливки. К однопозиционным К. м. относятся механизированные кокили, служащие для получения только одной отливки.

Части кокиля укрепляются на плитах, передвигающихся по направляющим. Устанавливают кокили размером от 250 x 320 мм до 800 x 1000 мм. Привод машин — пневматический или гидравлический.

Многопозиционные карусельные К. м. обычно состоят из группы однопозиционных машин, которые устанавливаются на вращающемся столе. При повороте стола последовательно совершаются следующие операции: закрывание кокилей, простановка стержней, заливка расплава. После затвердевания и выбивки отливки кокили продуваются и покрываются облицовкой для следующего цикла. Конвейерные К. м. имеют транспортное устройство, по которому передвигаются тележки с однопозиционными К. м. или кокили. На конвейере производится заливка кокилей сплавом и выбивка отливок.

К. м. входят в автоматизированные линии. Например, на автоматизированной линии в кокилях отливают станины электродвигателей (завод «Динамо», Москва, 1972). В состав линии входят индукционные электрические печи, заливочная машина, две карусельные К. м., два агрегата для термической обработки отливок и транспортирующие устройства. Производительность линии 8000 т отливок в год, линию обслуживают 6 человек.

Однопозиционная универсальная кокильная машина

Рис. 1 Однопозиционная универсальная кокильная машина (верхняя часть кокиля откинута): 1 — станина; 2 — подвижные плиты; 3 — стойки; 4 — направляющие; 5 — гидравлический цилиндр; 6 — боковые части кокиля; 7 — нижняя плита кокиля

Многопозиционная карусельная кокильная машина

Рис. 2 Многопозиционная карусельная кокильная машина: 1 — однопозиционная машина; 2 — вращающийся стол

Лит.: Дубинин Н. П., Механизация и автоматизация литья в металлические формы, М., 1959; Механизация и технология производства кокильного литья, К., 1969.

Н. П. Дубинин

Кокс

От нем. Koks, от англ. соке.

Искусственное твёрдое топливо повышенной прочности; получается при нагревании до высоких температур (950-1050 °С) без доступа воздуха природных топлив или продуктов их переработки (см. Коксование). В зависимости от вида сырья различают каменноугольный, электродный пековый и нефтяной К. Основное количество К. производится из каменного угля.

Каменноугольный К. применяют главным образом в доменном процессе для выплавки чугуна (доменный К.). К. здесь служит одновременно топливом и восстановителем железной руды. В значительно меньших количествах К. используется в литейном производстве (литейный К.), для агломерации руд, в химической промышленности, цветной металлургии и др.

Производство каменноугольного К. возникло в 18 в., когда понадобилось заменить становившийся всё более дефицитным древесный уголь для доменных печей. Первая промышленная плавка на К. была выполнена в Великобритании в 1735. К 1970 мировое производство К. превысило 300 млн. т в год. В СССР, занимающем по производству К. 1-е место в мире, в 1972 было произведено 79,75 млн. т.

Каменноугольный К. представляет собой удлинённые куски серого цвета. Истинная относительная плотность К. 1,80-1,95 г/м3, кажущаяся, с учётом пор, 0,8-1,0, пористость в среднем около 50%. Насыпная масса К. 400-500 кг/м3. Теплота сгорания К. около 29 Мдж/кг (около 7000 ккал/кг), а его горючей массы около 33 Мдж/кг (около 8000 ккал/кг).

Содержание углерода в горючей массе К. выше 96%, выход летучих веществ 0,8-1,0%. Содержание влаги в К. при сухом тушении не превышает 0,5%, а при мокром - обычно 2-4%. Содержание серы в доменном К. из донецких углей составляет 1,5-1,9%, из кузнецких - 0,4-0,5%; для литейного К. оно не должно превышать 1,2%. Содержание фосфора в К. при выплавке, например, бессемеровского чугуна не должно превышать 0,015%. Зольность доменного К. должна быть не выше 9-10,5%. При увеличении количества этих составных частей К. ухудшается качество металла, повышается расход К. и шихты и резко снижается производительность доменной печи.

Электродный пековый и нефтяной К. имеют по сравнению с каменноугольным очень низкую зольность, как правило, не выше 0,3% (до 0,8% у нефтяного К.) Электродный пековый К. получают коксованием в камерных динасовых печах высокоплавкого каменноугольного пека. Нефтяной К. образуется также при крекинге и пиролизе продуктов перегонки нефти. Электродный пековый и нефтяной К. - основное сырьё для производства электродов.

Лит.: Справочник коксохимика, т. 2, М., 1965; Гофтман М. В., Прикладная химия твердого топлива, М., 1963.

Д. Д. Зыков