Четверг, 4 Июль 2024, 04:18

Сайт: Система поддержки учебных курсов НИ РХТУ
Курс: Электронная библиотека (Электронная библиотека)
Глоссарий: Терминологический словарь

Коксование

Промышленный метод переработки природных топлив (главным образом каменного угля) путём нагревания до 950-1050 °С без доступа воздуха. Основной продукт К. - кокс.

К. возникло в 18 в., когда истребление лесов для получения древесного угля, первоначально шедшего на выплавку чугуна, стало угрожающим и потребовалось заменить этот уголь минеральным топливом. В 1735 в Великобритании была проведена первая доменная плавка на коксе. Кокс выжигался в кучах, подобно тому как до этого выжигался древесный уголь. В конце 18 в. было освоено К. в полузакрытых, а с 1830 - в закрытых камерах, причём выделяющиеся летучие продукты сжигались. С 70-х гг. 19 в. начинают использовать летучие продукты; совершенствуются методы обогрева печей для К. К началу 20 в. процесс К. оформился в современном виде, и в дальнейшем происходило лишь его совершенствование.

К. углей протекает в несколько стадий. При нагревании до 250 °С из угля испаряется влага и выделяются продукты разложения - СО и СО2. Затем (300 °С) выделяется небольшое количество лёгкой смолы и образующейся при расщеплении кислородных соединений, входящих в состав угля, т. н. пирогенетической влаги. Приблизительно при 350 °С уголь размягчается, переходя в тестообразное, пластическое состояние. В расплаве происходит интенсивное разложение угля с выделением так называемых первичных продуктов (первичного газа и первичного дегтя), имеющих сложный состав. Тяжелые углеродистые остатки от разложения угля спекаются при температуре около 500 °С, образуется твёрдый пористый продукт - полукокс . При дальнейшем нагревании полукокс теряет остаточные летучие вещества, главным образом водород, и претерпевает усадку, вызывающую его растрескивание. Выше 700 °С полукокс полностью превращается в кокс. Первичные же продукты разложения, соприкасаясь с раскалёнными стенками и сводом печи, а также с коксом, подвергаются пиролизу и превращаются во вторичные продукты. В составе газа преобладающим становится Н2 (50% по объёму) и СН4 (25% по объёму), органические продукты ароматизируются. Вторичные продукты улавливаются и используются как ценное сырьё для химической промышленности.

В коксовой печи К. протекает послойно, причём температура слоев снижается от нагретых (выше 1000 °С) стенок печи к середине загрузки. Соответственно этому и состав слоев (начиная от стенок) меняется в последовательности кокс - полукокс - уголь в пластическом состоянии - сухой уголь - сырой уголь. К. считается законченным, когда все увеличивающиеся по толщине слои кокса сойдутся в середине печи. К концу К. вследствие усадки образовавшийся «коксовый пирог» оказывается разделенным пополам швом-разрывом, идущим параллельно стенкам камеры, а каждая половина «пирога» - расчленённой на более или менее крупные куски трещинами, проходящими перпендикулярно стенке. К. длится 13-18 ч. Готовый кокс выдаётся из печи коксовыталкивателем и поступает в тушильный вагон, где раскалённый кокс охлаждают (тушат) водой или инертным газом («мокрым» или «сухим» способом).

Техника К. непрерывно совершенствуется: увеличивается размер камер печи и механизируется их обслуживание; вводится загрузка печей высушенной и подогретой (до 200 °С) шихтой. Разрабатываются и принципиально новые, непрерывные методы К., основанные на формовании в потоке брикетов из угля, переведённого в пластическое состояние, и последующей прокалке брикетов.

Лит.: Справочник коксохимика, т. 2, М., 1965; Тайц Е. М., Свойства каменных углей и процесс образования кокса, М., 1961; Сысков К. И., Королев Ю. Г., Коксохимическое производство, М., 1969.

Д. Д. Зыков

Коксовая печь

Технологический агрегат (cм рис. 1), в котором осуществляется коксование каменного угля. Первые К. п. (так называемые стойловые) стали применять в начале 19 в. Они состояли из кирпичных стенок высотой до 1,5 м и длиной до 15 м, расположенных друг от друга на расстоянии 2-2,5 м. Загруженный в пространство между стенками уголь покрывали сверху и с торцов землёй и поджигали. Коксование продолжалось 8-10 дней. В 30-х гг. 19 в. появились ульевые печи, в которых коксование протекало в закрытых куполообразных камерах с небольшим доступом воздуха. В середине 19 в. получили распространение пламенные К. п. с внешним обогревом. Угольную шихту загружали в выложенные из огнеупорного кирпича камеры, разделённые обогревательными простенками с вертикальными каналами, в которых сжигался коксовый газ. Важным этапом явилось создание в 70-х гг. 19 в. К. п. с улавливанием химических продуктов из коксового газа. В этих печах камеры коксования были отделены от отопительных простенков. Современные К. п. по способу загрузки угольной шихты и выдачи кокса подразделяют на горизонтальные и вертикальные. Наиболее широко распространены горизонтальные К. п. периодического действия. Такие К. п. состоят из камеры коксования, обогревательных простенков, расположенных по обе стороны камеры, регенераторов. На верху камеры коксования предусмотрены загрузочные люки, с торцов камера закрыта съёмными дверями. Длина камер достигает 13-16 м, высота 4-7 м, ширина 0,4-0,5 м. Обогрев камер осуществляется за счёт сжигания в вертикальных каналах простенков коксового, доменного или др. горючего газа. Период коксования одной угольной загрузки зависит от ширины камеры и температуры в обогревательных каналах и составляет обычно 13-18 ч. По окончании коксования раскалённый кокс выталкивают из камеры через дверные проёмы коксовыталкивателем и тушат. Для компактности коксового цеха и лучшего использования тепла К. п. объединяют в батареи (по 61-77 К. п. в каждой) с общими для всех печей системами подвода отопительного газа, подачи угля, отвода коксового газа. Все операции по обслуживанию К. п. (загрузка, съём и закрытие дверей и люков, выдача и тушение кокса и т.д.) механизированы и автоматизированы. Разрабатываются К. п. непрерывного действия, например вертикального и кольцевого типа.

Батарея коксовых печей со стороны коксовыталкивателя

Рис. 1 Батарея коксовых печей со стороны коксовыталкивателя

Лит.: см. при ст. Коксование. Д. А. Копанева.

Коловорот

Ручной инструмент для сверления отверстий преимущественно в древесине, представляющий собой изогнутую рукоятку (скобу) с втулкой для зажима свёрл. Во время работы К. вращают, держась за рукоятку и нажимая на неё.

Коксовый газ

Горючий газ, один из продуктов коксования. Примерный состав К. г. (в % по объёму): Н2 55-60, СН4 20-30, СО 5-7, CO2 2-3, N2 4, ненасыщенных углеводородов 2-3, О2 0,4-0,8. Плотность при 0 °С и 760 мм pm. cm. (105 кн/м2) 0,45-0,50 кг/м3; теплота сгорания (низшая) 17,5 Мдж/м3 (4,0-4,5 тыс. ккал/м3); теплоёмкость 1,35 кдж/(м3·К); температура воспламенения 600-650 °С. К.г. ядовит и взрывоопасен, взрывная концентрация в воздухе - от 6 до 30%. Выход К.г. на 1 т сухой шихты - около 300 м3. Применяется как топливо, а также как сырьё для синтеза аммиака.

Колошник

Верхняя часть шахтной печи (домны), куда загружают рудные материалы, флюсы, топливо.

Колошниковый газ

Отходящий газ доменных печей.

Колпаковая печь

Термическая печь периодического действия, нагрев изделий в которой осуществляется под переносным нагревающим колпаком. Служит для термической обработки в газовой среде контролируемого состава листового и мелкосортного проката (см. Сортамент проката). К. п. классифицируют по назначению - для обработки рулонов ленты, листов, прутков и др. Наиболее распространены К. п. для отжига рулонов холоднокатаной стальной ленты - одностопные и многостопные. В многостопных К. п. на прямоугольный стенд под нагревательным колпаком устанавливают 3-8 стоп, каждая из которых защищена от действия продуктов сгорания или горячего воздуха своим муфелем. В стопе 3-5 рулонов общей массой до 180 т, высота стопы 3-5 м. Колпак обогревают газом или электрическими нагревателями сопротивления. По окончании нагрева изделий колпак переносят краном на другой стенд, а на первом - изделия охлаждают под муфелем. Теплообмен под муфелем интенсифицируют принудительной циркуляцией газа контролируемого состава. Охлаждение ускоряют, поливая муфель водой или обдувая холодным воздухом. При обработке в К.п. распушённых рулонов ленты с зазорами между витками циркулирующий через зазоры газ омывает всю поверхность ленты, что позволяет ускорить её нагрев и охлаждение, а также проводить термохимическую обработку.

Лит.: Аптерман В. Н., Двейрин Е. Г., Тымчак В. М., Колпаковые печи, [М.], 1965; Справочник конструктора печей прокатного производства, под ред. В. М. Тымчака, М., 1970, гл. 33.

В. Н. Аптерман

Кольцевая печь

Промышленная печь, в которой нагрев изделий происходит на кольцевом вращающемся поде. К. п. применяют главным образом для нагрева заготовок при прокатке труб, колёс и бандажей железнодорожного подвижного состава, для термической обработки металлических изделий, а также для нагрева заготовок из цветных металлов перед прокаткой и высадкой. Первая К. п. разработана в 1925 советским изобретателем Н. Д. Булиным. К. п. состоит из вращающегося пода и неподвижного кольцевого канала, перекрытого сводом (см. рис. 1) Кольцевые щели между вращающимся подом и неподвижной частью печи уплотняют водяными затворами. Изделия загружают в печь и выдают из неё через окна при помощи специальных загрузочно-разгрузочных машин (напольных или крановых). Рабочее пространство печи между окнами разделено жаростойкой перегородкой. В К. п. небольшого размера загружают и выдают изделия через одно окно. Под печей вращается на опорных роликах с помощью электрического привода. Наружный диаметр К. п. 10-30 м, а ширина пода 1,5-6 м, производительность до 75 mlч. Теплотехнические зоны и температурный режим крупной К. п. такие же, как и у методической печи. Небольшие К. п. работают с постоянной температурой по всему объёму печи. К. п. отапливают газом или жидким топливом. При наружном диаметре печи 10-12 м горелки или форсунки устанавливают только на наружной стене, а при большем - на наружной и на внутренней стенах.

Схема кольцевой печи

Рис. 1 Схема кольцевой печи: 1 - кольцевой вращающийся под; 2 - нагреваемое изделие; 3 - окно загрузки; 4 - окно выдачи; 5 - опорный ролик; 6 - привод вращения пода; 7 - горелка; 8 - дымопровод для отвода продуктов сгорания из печи в боров; 9 - разделительная перегородка

Лит.: Григорьев В. Н., Кольцевые печи для нагрева металла, М., 1958; Справочник конструктора печей прокатного производства, под ред. В. М. Тымчака, М., 1970, гл. 24 и 31.

Комбинированная сварка

Комбинированный метод сварки - сварка пластмасс, осуществляемая при сочетании различных видов сварки.

Компаунды полимерные

Литая изоляция, композиции на основе термореактивных олигомеров или мономеров; предназначены для пропитки (с целью изоляции) обмоток трансформаторов, дросселей электрических машин, изделий радиотехнической и электронной аппаратуры, а также для заполнения промежутков (заливки) между деталями радиотехнических и электронных устройств, в электрических машинах и аппаратах. Основное преимущество литой изоляции — возможность получения электротехнических изделий в виде малогабаритных блоков любой конфигурации, не требующих дополнительной обработки. К числу К. п. относят также имеющие ограниченное применение композиции на основе термопластических материалов (битумов, масел, канифоли, церезина и др.); эти К. п. представляют собой твёрдые или воскообразные массы, которые перед употреблением переводят в жидкое состояние нагреванием.

Для приготовления К. п. в качестве олигомеров чаще всего используют эпоксидные смолы, полиэфирные смолы, жидкие кремнийорганические каучуки, а в качестве мономеров — исходные продукты для синтеза полиакрилатов и полиуретанов. Наибольшее распространение получили эпоксидные К. п. В состав К. п., помимо мономеров и олигомеров, могут входить также пластификаторы, наполнители, ускорители отверждения или инициаторы полимеризации, пигменты.

К неотвержденным К. п. предъявляются следующие требования: отсутствие летучих компонентов; минимальная усадка при отверждении или полимеризации; низкая вязкость, обеспечивающая пропиточные и заливочные свойства; достаточно большая жизнеспособность. Отвержденные К. п. должны обладать высокими диэлектрическими () и прочностными показателями. Отверждение К. п. осуществляют при повышенных или обычных температурах.

Табл.1

Диэлектрические свойства отверждённых компаундов отечественных марок при 20°С

Название и марка компаунда

Тангенс угла диэлектрических потерь*

Удельное объёмное электрическое сопротивление, ом-см

Электрическая прочность при 50 гц×кв/мм

Диэлектрическая проницаемость*

Эпоксидные и эпоксиднополиэфирные:

Д-112........

0,01 (103)

1014

53

3,5 (103)

ЭЗК-9........

0,009(106)

1015

4,3 (106)

Д-8..........

0,03 (105)

1014

4,5 (106)

ЭПК-101.......

0,015 (50)

9,9-1014

22

4,8 (50)

Полиэфирный КГМС-1

0,04 (50)

5-1013

25

4,0 (50)

Метакриловый МБК-1

0,07 (50)

1014

20

4,0 (50)

Полиуретановый К-31

0,02 (106)

1014

27

3,5 (106)

Кремнийорганический К-67

0,005 (50)

1015

20

3,0 (50)

* В скобках указана частота, гц.

Лит.: Черняк К. И., Эпоксидные компаунды и их применение, 3 изд., Л., 1967; его же. Неметаллические материалы в судовой электро- и радиотехнической аппаратуре. Справочник, Л., 1966; Волк М., Леффордж Ж., Стетсон Р., Герметизация электротехнической и радиоэлектронной аппаратуры, пер. с англ., М. — Л., 1966.

М. А. Голубенка