Министерство науки и высшего образования Российской Федерации ФГБОУ ВО «Российский химико-технологический университет им. Д.И.Менделеева»

Новомосковский институт (филиал)

Козлов А.М., Бегова А.В.

Технология производства химического оборудования

Методические указания по выполнению контрольной работы для студентов заочной формы обучения по направлению подготовки «Технологические машины и оборудование» профиль «Машины и аппараты химических производств»

УДК 621.01 ББК 34.41 К 592

Рецензент:

Стекольников А.Ю.

кандидат технических наук, доцент (ФГБОУ ВО РХТУ им. Д.И.Менделеева, Новомосковский институт)

Козлов А.М., Бегова А.В.

К 592 **Технология производства химического оборудования.** Методические указания по выполнению контрольной работы для студентов заочной формы обучения по направлению подготовки «Технологические машины и оборудование» профиль «Машины и аппараты химических производств»/ФГБОУ ВО РХТУ им. Д.И. Менделеева, Новомосковский институт (филиал); Новомосковск, 2022. — 46с.

Методические контрольной работы указания ПО выполнению заочной формы обучения направлению студентов ПО подготовки «Технологические машины и оборудование» профиль «Машины и аппараты химических производств» включают в себя краткие сведения о рабочей программе курса ТПХО, составе лабораторного практикума, 10 вариантов заданий для выполнения контрольной работы и пример её выполнения. В приложении даны тесты для самостоятельного контроля уровня подготовки к зачёту и контрольные вопросы к зачёту, перечень рекомендуемой технической литературы по предмету.

Ил. 3. Библиогр.: 8 назв.

УДК 621.01 ББК 34.41

© ФГБОУ ВО «Российский химико-технологический университет им. Д.И.Менделеева Новомосковский институт (филиал), 2022

Введение

Одним из значимых факторов технического прогресса в машиностроении, как и в других отраслях, является совершенствование технологии производства. Особенность современного производства применение материалов: коррозионностойких, конструкционных жаропрочных жаростойких, композиционных, порошковых, полимерных и др. Обработка этих материалов требует совершенствования существующих технологических создания новых методов, основанных на механического, теплового, химического и электрического воздействия.

Для удовлетворения этих требований при изготовлении и ремонте деталей промышленного оборудования необходимо знать основы металлообработки, проектирования маршрутно-операционных технологий изготовления деталей машин и химической аппаратуры, что и является объектом изучения дисциплины ТПХО.

Процесс резания представляет собой комплекс чрезвычайно сложных явлений, зависящих от физико-механических свойств обрабатываемого материала, качества режущего инструмента, условий резания, состояния и оснастки оборудования, жёсткости технологической системы и явлений, возникающих в процессе взаимодействия инструмента и материала, а также вопросов обеспечения точности требуемых рабочим чертежом параметров детали.

Физико-механические и технологические свойства конструкционных материалов были изучены студентами ранее, в курсах: «Материаловедение» и «Технология конструкционных материалов», «Обработка металлов резанием». В рамках дисциплины ТПХО студентам необходимо проявить полученные ранее навыки обработки материалов из промышленных марок сталей на традиционном металлообрабатывающем оборудовании, но и научиться проектировать технологические процессы изготовления деталей в соответствии с требованиями рабочих чертежей (для чего необходимо уметь грамотно их читать), освоить проектирование сборочных процессов и изготовления химической аппаратуры.

1 Общие представления о содержании рабочей программы дисциплины «Технология производства химического оборудования»

Рабочая программа курса ТПХО включает следующие разделы:

Тема лекции	Краткое содержание			
Установочная	Предмет и задачи курса. Краткая историческая справка о			
лекция. Введение.	становлении машиностроения в России. Перспективы			
Предмет и задачи	дальнейшего развития технологии машиностроения			
курса.	транспортных средств.			
Особенности технологических систем изделий в отрасли	Классификация оборудования химических производств Изделие и его элементы. Служебное назначение Основные вилы связей в изделии. Качество изделия и			
Технологический процесс в машиностроении и его разновидности	Особенности конструкции оборудования химических производств. Требования к изготовлению при их конструировании. Технологический контроль конструкторской документации. Оценка технологичности конструкции изделия. Требования к сборке при конструировании изделий. Производственный и технологический процессы в машиностроении. Структура технологического процесса. Виды производства и характеристики их технологических процессов. Основные факторы, влияющие на характер технологического процесса. Концентрация и дифференциация технологического производства. Технология производства изделий в жёстких и гибких производственных системах. Требования к сборке при конструировании изделий. Сборка типовых узлов машин.			
Технологическое обеспечение качества	Технологическая точность и меры воздействия на неё. Факторы, влияющие на точность обработки и сборки. Технические требования к методам оценки технологических систем по параметрам качества. Базы и размерные связи. Пути повышения точности механической обработки и сборки. Управление ходом технологического процесса. Качество поверхности деталей машин и методы его достижения. Формирование качества поверхности методами технологического воздействия.			
Проектирование	Последовательность проектирования технологических			
технологических	процессов. Технологическая документация. Анализ			
процессов	технических условий и выбор типа заготовки. Расчёт			

механической обработки	межоперационных размеров и припусков на обработку. Построение операций технологического процесса. Особенности проектирования типовых и групповых технологических процессов.			
Технологические особенности сборки машин	Требования к сборке при конструировании изделий машиностроения. Сборка неподвижных неразъёмных и разъёмных соединений. Сборка типовых узлов машин. Технологичность конструкции и методы её обеспечения. Оценка технологичности конструкции изделия. Показатели технологичности и их определение.			
Технологическая подготовка производства	Технологический контроль конструкторской документации. Общие принципы технологической подготовки производства.			
Особенности автоматизированного проектирования технологических процессов на основе САПР	Автоматизированные системы технологической подготовки производства и проектирования технологических процессов. Организация автоматизированного технологического проектирования. Структурный синтез при автоматизированном проектировании. Математические модели технологических процессов.			
Типовые технологические процессы	Характеристика типового оборудования химических производств, технологические процессы изготовления обечаек, фланцев, штуцеров, днищ типового			
производства изделий отрасли	оборудования предприятий химической промышленности.			

Рабочая программа курса ТПХО для студентов заочной формы обучения в период сессии включает 10 часов лекций, 12 часов лабораторных занятий и 6 часов практических занятий. В следующем семестре студенты выполняют курсовую работу по технологии изготовления детали в соответствии с рабочим чертежом.

Лабораторный практикум включает выполнение следующих работ:

- 1. Жесткость технологической системы СПИД
- 2. Определение погрешности установки размера по лимбу станка
- 3. Влияние режимов резания и геометрии режущего инструмента на качество обработанной поверхности
 - 4. Погрешности установки обработки при точении вала
 - 5. Сборка машин

Практические занятия имеют следующую тематику:

- 1. Служебное назначение изделия. Основные связи в изделии. Выбор рационального метода получения заготовки детали, согласно чертежу.
- 2. Оценка технологичности конструкции изделия. Технологический контроль конструкторской документации.
- 3. Последовательность обработки поверхностей заготовки и определение количества технологических переходов.

4. Принципы подхода к выбору технологического оборудования и оснастки с целью энерго- и ресурсосбережения в ходе выполнения технологических процессов механической обработки со снятием стружки. Контроль качества изготовления изделия

После того как студенты прослушают курс обзорных лекций, ответят на вопросы теста и защиты контрольной работы и лабораторных работ они допускаются к сдаче зачёта по дисциплине. Рубежной формой контроля знаний студентов по дисциплине ТПХО является зачёт. Вопросы для подготовки к его сдаче и тест приводятся в приложении к методическим указаниям.

2 Методика выполнения контрольной работы по дисциплине ТПХО

Для выполнения контрольной работы необходимо выбрать задание в соответствии с вариантом. Вариант контрольной работы выбирается по последней цифре номера зачётной книжки студента. Рисунки к заданиям контрольной работы представлены в приложении 1.

Предлагается 10 вариантов заданий. Выбрав свой вариант, предстоит выполнить следующие условия:

- 1) ознакомиться с рабочим чертежом детали;
- 2) провести его анализ;
- 3) в каждом варианте имеется условие задачи, которую Вам предстоит выполнить:
- 4) необходимо найти указанную в задании поверхность детали и установить требования к отделочной обработке каждой;
- 5) с учётом свойств конструкционного материала выбрать способ получения исходной заготовки исходя из условия, что тип производства единичный (т.е. применительно к условиям ремонтной базы цеха или предприятия химической промышленности);
- 6) определиться с требованиями точности (квалитет) исходной заготовки и шероховатости её поверхности;
- 7) учитывая точность заготовки и окончательные требования шероховатости к рассматриваемой поверхности, определить число технологических переходов для окончательной обработки этой поверхности (черновая и примерный припуск на неё; получистовая или сразу чистовая и припуски на эти переходы);
- 8) определить способ выполнения каждого перехода, вид металлообрабатывающего оборудования, режущий инструмент и оснастку;
- 9) выбрать режим резания (глубина, скорость, подача) для каждого технологического перехода;
- 10) представить операционный эскиз изготовления конкретной поверхности с изображения инструмента в конечном положении (если инструментов несколько, то в удобном для размещения на операционном эскизе положении);
- 11) одно задание выполняется подробно, а два других только маршрут обработки.

Указанные условия выполнить для каждой поверхности задания, помня о том, что заготовка уже выбрана и выбор обоснован студентом.

Контрольная работа выполняется с использованием персонального компьютера и стандартных офисных программ на листах бумаги формата A4 (поля: левое 3 см; верхнее, нижнее по 2 см; правое 1,5 см), текст набирается только с одной стороны листа. Образец титульного листа представлен в приложении 4.

3 Варианты заданий для выполнения контрольной работы

Рисунки к заданиям контрольной работы представлены в приложении 1.

Вариант № 1

Крышка 1.

Задание на выполнение:

- 1) обработать внутреннюю цилиндрическую поверхность диаметром 40 и 48 мм;
- 2) обработать плоскую поверхность разъёма (привалочная поверхность крышки);
 - 3) сформировать два отверстия диаметром 9 мм.

Вариант №2.

Корпус 1.

Задание на выполнение элементов детали «корпус 1»:

- 1) обработать внутреннюю цилиндрическую поверхность диаметром Ø52H7 мм;
 - 2) плоскую поверхность разъёма с наружным диаметром Ø 84 мм;
- 3) изготовить резьбовые отверстия на привалочной поверхности с наружным диаметром Ø 84мм.

Вариант №3.

Крышка 2.

Задание на выполнение элементов детали «крышка 2»:

- 1) изготовить внутреннюю цилиндрическую канавку диаметром Ø 32 мм;
- 2) изготовить коническое резьбовое отверстие с резьбой ¼ дюйма;
- 3) сформировать крепёжное отверстие во фланце (сечение Б-Б).

Вариант №4.

Корпус 2.

Изготовить элементы детали «корпус 2»:

- 1) изготовить канавку для выхода резьбы диаметром Ø 49 мм;
- 2) снять лыску размером 6 мм от поверхности;
- 3) сформировать резьбовое отверстие размером М16.

Вариант № 5.

Колесо зубчатое прямозубое

Задание на выполнение элементов детали «прямозубое колесо»:

- 1) изготовить зубчатый венец;
- 2) изготовить посадочное отверстие в ступице диаметром Ø 55H7;
- 3) выполнить шпоночный паз.

Вариант № 6.

Корпус 3.

Задание на изготовление элементов детали «корпус 3»:

- 1) изготовить внутреннее коническое отверстие с углом раскрытия 30°;
- 2) точить канавку для выхода режущего инструмента диаметром Ø37,2 мм;
- 3) нарезать внутреннюю резьбу М36 *J*.

Вариант №7.

Колесо зубчатое коническое

Задание на изготовление элементов детали «колесо коническое»:

- 1) изготовить зубчатый венец;
- 2) сформировать посадочное отверстие в ступице диаметром Ø 45H7;
- 3) изготовить шпоночный паз.

Вариант № 8.

Барабан

Задание на изготовление следующих элементов детали «барабан»:

- 1) изготовить наружную поверхность детали-желоба для укладки каната;
- 2) обработать внутреннюю посадочную поверхность барабана диаметром Ø 40H7;
- 3) подрезать внутренний торец ступицы с наружным диаметром 108 мм.

Вариант №9. Кронштейн

Изготовить элементы детали «кронштейн»:

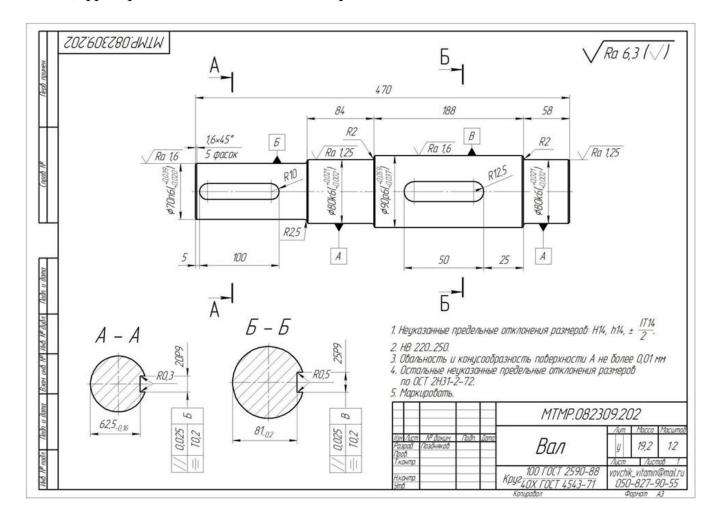
- 1) изготовить вилку с шириной паза 20 мм;
- 2) сформировать элемент упругости шириной 2 мм;
- 3) обработать наружную поверхность вилки с размером 40 мм.

Вариант № 10. Штуцер

Задание на изготовление элементов детали «штуцер»:

- 1) нарезать наружную резьбу М16;
- 2) просверлить отверстие в головке диаметром Ø 1,2 мм;
- 3) снять фаску 1х45.

Чертёж детали может быть представлен копией из методических указаний.


4 Пример выполнения контрольной работы

Для примера выполним вариант №25.

Вариант № 25.

Задание на изготовление элементов детали «вал»:

- 1) изготовить ступень диаметром Ø 80к6;
- 2) подрезать торец заготовки и зацентровать;
- 3) фрезеровать шпоночный паз шириной 25 мм.

Задание 1: требуется спроектировать технологический процесс изготовления ступени вала диаметром 80кб $\left(\frac{+0.21}{+0.002}\right)$, длина ступени 58 мм.

Анализ чертежа:

Поскольку форма детали — тело вращения, то основным способом обработки заготовки будет токарная, материал детали сталь 40X ГОСТ4543-71.

После термической обработки (улучшение) получит твёрдость НВ 220-250, обрабатываемость резанием в этом состоянии стали — хорошая [2], шероховатость R_a 1,25 мкм, галтель R=2 мм с соседней ступенью большего размера диаметром 90 мм, эта поверхность является базой для контроля овальности, которая должна быть не более 0,01 мм.

Назначение поверхности (имеется и вторая с теми же параметрами) — посадочное место подшипника скольжения (кб — подшипниковая посадка). Простановка линейных размеров осуществляется от одной базы — правого торца детали. Это соответствует логике обработки на токарном оборудовании. Т.е. необходимо обработать торец заготовки и от него формировать остальные

ступени детали, т.к от него ведётся отсчёт линейных размеров при обработке уступов.

Деталь достаточно технологичная: жёсткая (т.к. отношение длины к диаметру менее 10), все геометрические параметры соответствуют стандартным, а конструктивные элементы (канавки, фаски, галтели) выполнены по действующим ГОСТам, имеется полное соответствие между точностью и шероховатостью исполнительных поверхностей.

Решение задачи:

Поскольку производство единичное, то в качестве исходной заготовки может быть взят круглый горячекатаный прокат нормальной точности диаметром $100 \left(\frac{+0.6}{-1.7}\right) [1]$

Круг
$$\frac{100 \times 476 \ \Gamma OCT 2590 - 2006}{Cmaль 40X \ \Gamma OCT 4543 - 71}$$

Круг после отрезки на ножовочном станке был подвергнут обработке торцов в размер 470 мм и центровке (центровка обеспечит установку заготовки в центрах на токарном станке и на кругло-шлифовальном, что способствует симметричному расположению всех ступеней относительно оси детали и экономии металла — выполняется принцип постоянства базы).

Из приведённых выше соображений токарная операция может состоять из двух установов (подрезка 2-х торцов и одновременная их центровка). Поскольку Ø100мм и длина 4706 мм заготовки, то предположительно можно торцовку и центрование провести на фрезерно - центровочном станке. После установки детали в центрах токарного станка будет проведена черновая обработка (обдирочная обработка с целью удаления дефектного поверхностного слоя и увеличения точности и шероховатости поверхности).

Поскольку точность окончательного размера данной ступени соответствует 6 квалитету, то эта поверхность может быть получена чистовым шлифованием, о чём свидетельствует и высота микронеровностей R_a 1,25 мкм. Табличное значение операционного припуска на диаметр при шлифовании составляет 0,5мм [2], распределяем его на шлифование предварительное (черновое) и окончательное (чистовое) — примерно в отношении 3:1 и получим Π_3 =0,375 мм и Π_4 =0,125 мм. Округлённо принимаем 0,4 и 0,1 мм.

Таким образом, для получения заданной поверхности потребуется две операции и 4-е технологических перехода: два токарных (черновой и под шлифование) и два кругло-шлифовальных (получистовой и чистовой). Припуск на точение под шлифование Π_2 =1,2 мм. Отсюда находим припуск на припуск на черновое точение:

$$\Pi_1 = \Pi_{\text{общ}} - \Pi_2 - \Pi_3 - \Pi_4 = 10$$
 - 1,2 - 0,5 = 8,3 мм $\Pi_{\text{обш}} = (90$ - $80) = 10$ мм

$N_{\underline{0}}$	Содержание	Расчётная	Промежут. размер с	Шерох
перехо	перехода	величина	квалитетом и	оватост
да		промежут.	допуском	ь, мкм

		размера		
4	Шлифовать	$d_4 = 80p6 + 0.021$	$d_4 = 80p6 \pm 0.021$	R_a 1,25
	поверхн. окончат.	+0,002	+0,002	a 1,20
	Исходн. расч.			
	максим. размер			
3	Шлифовать поверх.	$d_3=80,021+0,1$	80,121h8(-0,054)	R_{a} 2,5
	предварит	= 81,121		a 2, 5
2	Точить поверхность	$d_2 = 81,121+0,4$	81,521h10(-,014)	R_{a} 5,0
	под шлифование	=81,521		a 5,0
1	Точить поверхность	$d_1=81,521+1,2$	82,721 h13(-0,54)	$R_a 20$
	начерно	= 82,721		a 2 0
0	Диаметр исходной	$d_0 = d_1 + (8,3 -$	d ₀ =90,481h13(-0,054)	R_a 2,5
	поверхности (после	0,54) = 82,721+		a 2,5
	обраб. под 90 h13)	7,76 = 90,481		

После каждого перехода точность повышается в такой последовательности: 13-10-8-6 и соответственно допуск размера уменьшается в той же последовательности. Параметры шероховатости уменьшаются сначала в 4 раза, а затем в 2 раза.

1. Проектирование последовательности токарной обработки

Для проведения процесса подготовки поверхности под шлифование необходимо убрать достаточно существенный припуск на диаметр 8,3 мм путём черновой обработки при глубине резания 4,15 мм.

1.1.Выбор оборудования для токарной операции

Для рассматриваемого случая (с учётом типа производства) пригодны универсальные токарные станки, допускающие обработку заготовок над суппортом диаметром 100 мм и более и расстоянием между центрами 500 мм и более. К таким станкам относятся модели 1П611, 1Б616, 1К62, 16К20 и др. Возьмём наиболее распространённый станок модели 16К20 (наибольший наружный диаметр заготовки над суппортом 220 мм и межцентровое расстояние 710 мм). Технические характеристики станка вполне приемлемы для нужд единичного производства.

1.2. Технология оснастки для данной операции состоит из:

- а) токарного поводкового патрона по ГОСТ2571-71 диаметром 400 мм;
- б) поводкового хомутика по ГОСТ2578-70 для зажима заготовок диаметром 100 и 62 мм;
- в) упорного центра Морзе 6 по ГОСТ2575-79 для установки в шпиндель станка;
 - г) вращающегося центра Морзе 5 ГОСТ8742-75.

Выбор режущего инструмента производится по справочникам, ГОСТам и др. источникам. Так, для обтачивания поверхности начерно используют токарный проходной отогнутый резец, оснащённый твёрдосплавной пластиной T15K6, с главным углом в плане $\phi = 45^{\circ}$ по ГОСТ 18879-73. Размеры резца — по размерам резцедержателя станка: $16 \times 20 \times 150$.

Контроль размеров будет производиться штангенциркулем и линейкой, скобами и шаблонами. Для контроля шероховатости обработанных

поверхностей применяем образцы сравнения шероховатости R_a 20 и R_a 5 по ГОСТ 9378-75 для наружных поверхностей вращения.

Установление режимов резания производится с использованием справочной литературы, а затем по паспортным данным станка находим фактическое их значение.

1.3. Режим обработки токарной операции

1-й переход. Глубина резания t=4,15 мм, выбираем подачу S_{cnp} =0,5-0,7 мм/об, устанавливаем фактическую (по паспортным данным станка) S_{φ} = 0,7 мм/об; далее выбираем скорость вращения $V_{cnp.}$ = 117м/мин (1,95 м/с), определяем расчётную частоту вращения шпинделя: зная, что $V = \frac{\pi \cdot d \cdot n}{1000}$; $n_{pacq.}$ = 1000×117/3,14×90 = 532 об/мин, частота вращения по паспорту станка n_{φ} = 500 об/мин; рассчитываем фактическую скорость резания:

$$V_{\phi} = 0.001 \times 3.14 \times 90 \times 500 = 141.3 \text{ M/MUH}.$$

Теперь нужно проверить выбранный режим резания по мощности станка. Мощность, потребная на резание:

$$N_p = P_Z \times V_{\phi} / 60 \times 102;$$

$$P_z = C_P \cdot t^X \cdot S^Y \cdot V^n$$
 [кГ] = 9,81 $C_P \cdot t^X \cdot S^Y \cdot V^n$ [H] где x, y, n — показатели степени (из справочника x=1, y=0,75, n = -0,15, C_p = 300)

Кроме того, известно, что главная составляющая для чёрных металлов может определена по формуле: $P_z = C_p \, \sigma \, t \, S^{0,75} \, [\kappa \Gamma]$; для стали $C_p = 1,35$, а $\sigma = 75 \, \kappa \Gamma/\text{mm}^2$.

Отсюда мощность, потребная на резание, равна 8,3 кВт, поправочный коэффициент $K_N=1$. Мощность на шпинделе по слабому звену кинематической цепи $N_{\text{шпинд.}}=7,6-8,0$ кВт. Отсюда следует, что принятый режим резания неосуществим на станке, т.к. потребная мощность больше, чем достижимая (8,3>7,6).

Выход из положения можно найти, перейдя на ближайшую меньшую частоту вращения n_{φ} = 400 об/ мин. При этом V_{φ} = 113 м/мин. При этом режиме потребная мощность будет 7 кВт. Процесс резания теперь осуществим, т.к. выдержано условие $N_{\text{потр.}}$ < $N_{\text{шпинд.}}$ Заметим, что вынужденное снижение скорости резания против нормативной несколько увеличит стойкость режущего инструмента и даст снижение себестоимости процесса.

2. Проектирование шлифовальной операции

Анализ чертежа показал, что сталь 40X ГОСТ 4543-71 после улучшения имеет твёрдость НВ 220-250 (предполагаем, что термообработка была проведена до начала механической обработки со снятием стружки). На основании исходных данных принимаем, что технологическое оснащение должно быть универсальным, производительным и точным.

2.1. Выбор оборудования

Учитывая габаритные размеры заготовки, выбираем круглошлифовальный полуавтомат модели 3M151, предназначенный для обработки заготовок с диаметром 200 мм и максимальной длиной 700 мм; мощность электродвигателя круга 10 кВт; частота вращения круга 1590 об/мин; скорость резания 50 м/с; частота вращения заготовки (регулирование бесступенчатое) 50...500 об/мин; скорость продольного перемещения стола (регулирование бесступенчатое) 0,05....5 м/мин; периодическая подача шлифовальной бабки при реверсе стола (регулирование бесступенчатое) 0,001....0,05 мм/ход.

2.2. Выбор технологической оснастки

Для проведения операции необходимы:

- а) приспособления: патрон поводковый (имеется на станке), хомутик для диаметра 90 мм ГОСТ16488-70, два упорных центра Морзе 4 ГОСТ 13214-79;
- б) шлифовальный круг, выбираем по справочнику [2] : для данной операции подходит круг из белого электрокорунда, с твёрдостью С1 (средняя), керамической связки марки К, зернистостью №40 (размер зерна 40 мкм), средней структурой 6;

Форма и размеры круга выбираются по паспортным данным станка: круг ПП (плоский прямоугольного профиля), с размерами: наружный диаметр круга 600мм, ширина 80 мм, посадочное отверстие 305 мм, т.о. марка ПП $600 \times 80 \times 305$ 24A 40 C1 6K ГОСТ 2424-75.

в) средства контроля: для диаметра — средство активного контроля ГОСТ 8517-70 (на станке имеется), для шероховатости — образцы шероховатости R_a 1,25 ГОСТ 9378-75.

2.3. Выбор режима резания

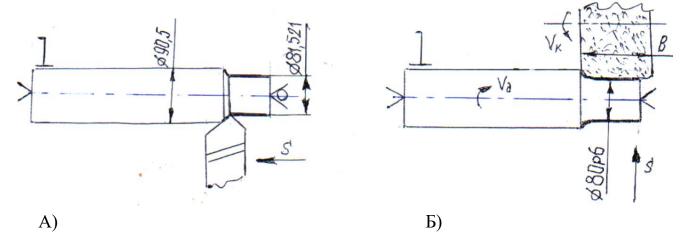
Установление режима резания начинаем с выбора частоты вращения заготовки в зависимости от её диаметра, твёрдости обрабатываемого материала и исходя из условий бесприжогового шлифования [2] 123 об/мин. Скорость резания при этом равна

$$V_3 = \frac{\pi \cdot d_{_{\pi}} \cdot n_{_{\pi}}}{1000} = \frac{3,14 \cdot 81,521 \cdot 123}{1000} = 32 \text{ M/MH} = 0,53 \text{ M/c}.$$

Определяем продольную минутную подачу [2] 4760 мм/ мин. На табличное значение принимают поправочные коэффициенты в зависимости: 1) от шероховатости поверхности $K_{\text{SMuh.1}}$ = 1,0; 2) от формы обрабатываемой поверхности $K_{\text{SMuh.2}}$ = 0,95. Тогда имеем

$$S_{\text{мин.}} = S_{\text{мин.табл.}} \times K_{S\text{мин.}1} \times K_{S\text{мин.}2} = 4760 \times 1,0 \times 0,95 = 4522 \text{ мм/мин.}$$

Поперечная подача за один ход стола 0,005 мм/ход [2]. Поправочный коэффициент при Ігруппе обрабатываемого материала и 6-м квалитете равен K_1 = 1,0; коэффициенты, зависящие от: припуска на обработку K_2 = 0,6; размера и скорости шлифовального круга K_3 = 1,3; способа шлифования и контроля размера K_4 = 1,4; формы поверхности и жёсткости заготовки K_5 = 1,0; твёрдости круга K_6 = 1,0; точности и жёсткости станка K_7 = 1,0. Тогда поперечная подача равна


 $S_{\text{поп.}} = S_{\text{табл.}} \times K_1 \times K_2 \times K_3 \times K_4 \times K_5 \times K_6 \times K_7 = 0,005 \times 1,0 \times 0,6 \times 1,3 \times 1,4 \times 1,0 \times 1,0 \times 1,0 = 0,0055$ мм/ход.

Определяем мощность резания: $N_{\text{табл.}} = 4,8$ кВт. Поправочный коэффициент $K_p = 1,47$, тогда $N_{\text{рез.}} = 48 \times 1,47 = 7,1$ кВт, что меньше мощности станка.

Устанавливаем бесприжоговую предельную мощность:

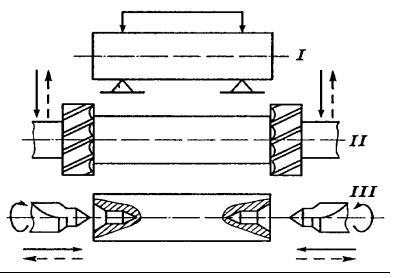
$$N = N_{\text{pes.}} \: / \: B_{\text{kp.}} = 7.1 \: / \: 80 = 0.089 \; \text{kBt/ MM} \: , \, \text{что} < N_{\text{makc}} = 0.125 \; \text{kBt}$$

3. Операционные эскизы:

Эскиз №1(А). Токарная черновая и под шлифование.

Эскиз №2(Б). Кругло-шлифовальная

(Установочные элементы, использованные на эскизе, по ГОСТ 3.1107- 81, а обработанные поверхности — жирной линией).


Задание 2. Требуется подрезать торец и просверлить центровое отверстие (зацентровать)

Решение задачи. Поскольку уже была выбрана заготовка (прокат горячекатаный круглого сечения) стандартное обозначение:

Круг
$$\frac{100 \times 476 \ \Gamma O C T 2590 - 2006}{C maль 40 X \ \Gamma O C T 4543 - 71}$$

то на подрезку торца имеется односторонний припуск 2,5 мм, который необходимо удалить. Закрепляем заготовку в тисках с призматическими губками фрезерно-центровального станка 2Г942 и производим подрезку торца одновременно двумя штатными торцевыми фрезами и засверливание центровых отверстий центровыми свёрлами диаметром 12 мм. Установку, фрезерование и сверление выполнить согласно эскизу №3.

(Пояснения к эскизу 3 в виде Рис.1 **В контрольной работе можно не приводить.** Последовательная обработка одновременно двух торцов двумя торцевыми фрезами и следующим переходом (без смены установки) сверление одновременно двух торцов центровочными свёрлами)

Эскиз №3.

Для наглядности приведена схема работы фрезерно-центровочного станка

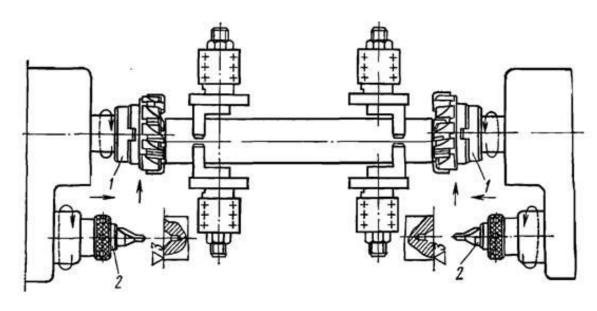
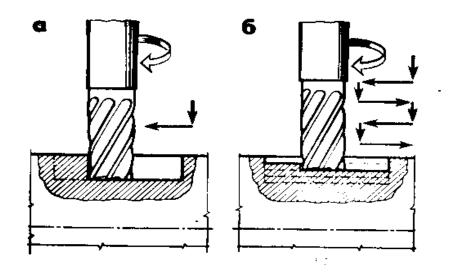
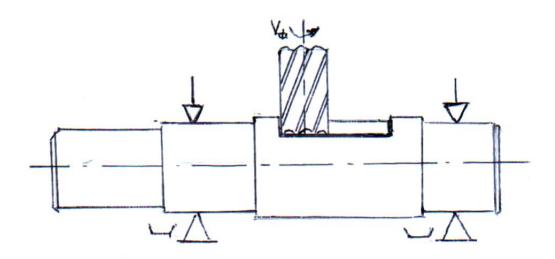


Рис.1. Схема работы фрезерно-центровочного станка: 1 —шпиндель с креплением для торцовой фрезы; 2- шпиндель с цангой для закрепления центровочного сверла


Контроль точности изготовления: линейка и калибр.

Задание 3.


Требуется фрезеровать закрытый шпоночный паз под призматическую шпонку с размерами: ширина 25Р9 $\left(\frac{-0,022}{-0,074}\right)$ длиной 50h14 ($_{-0,052}$) мм, глубиной 9

мм, отклонение от симметричности 0,2 мм. и от параллельности 0,025 мм. Для чего выбираем универсальный вертикально-фрезерный станок 6Р13, тиски с призматическими губками или в призмах с прижимной планкой и концевую шпоночную фрезу диаметром 22 мм, для чернового фрезерования и 25 мм - для чистового со стандартным радиусом зуба 0,5мм. ГОСТ 9140-78.

Контроль качества изготовления шпоночного паза производится штангенциркулем (размеры: длина, ширина, радиус перехода от стенки к донышку и глубина), а отклонения от симметричности — калибром, отклонения от параллельности — индикатором часового типа ИЧ1 с ценой деления: 0,001мм. ГОСТ 9696-82. Шероховатость— образцами сравнения R_a 6,3 мкм для фрезерования плоской поверхности.

Рис.2. Схема формирования закрытого шпоночного паза: а — за один рабочий ход врезанием на полную глубину паза; б — маятниковой подачей с глубиной резания 0,5-2,0 мм за каждый ход.

Эскиз 4. Формирование шпоночного паза (базирование на призматических опорах с прижимными планками)

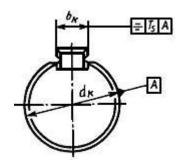
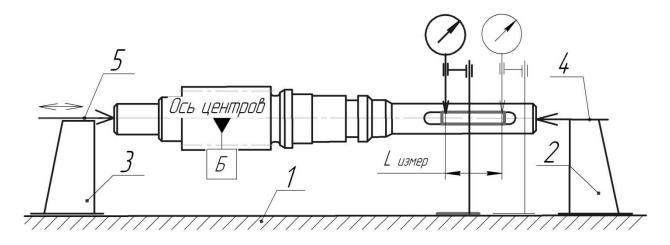
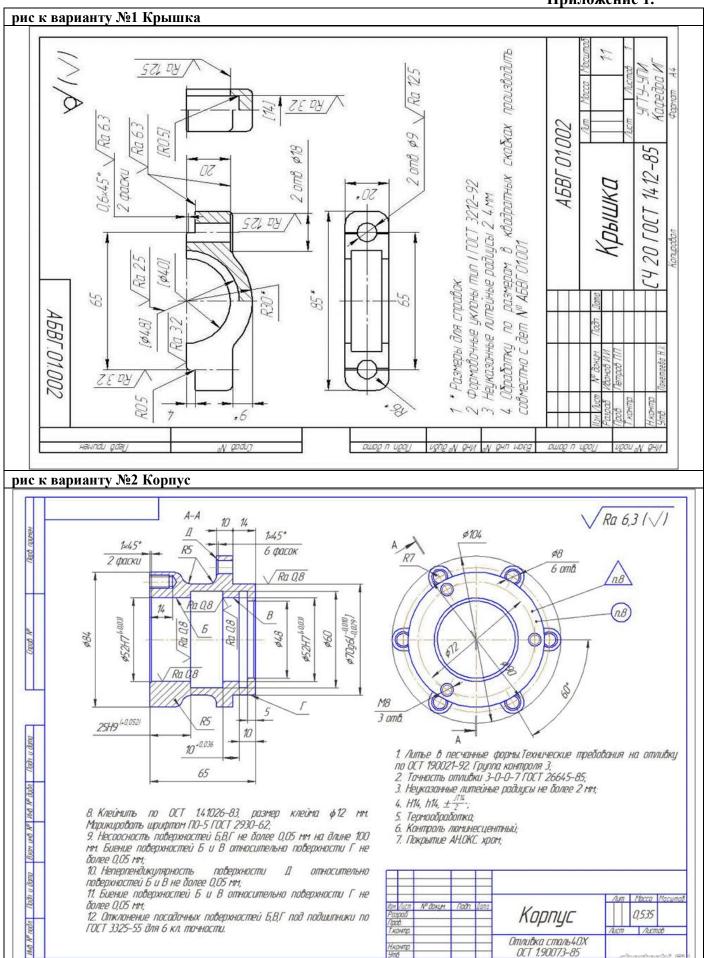
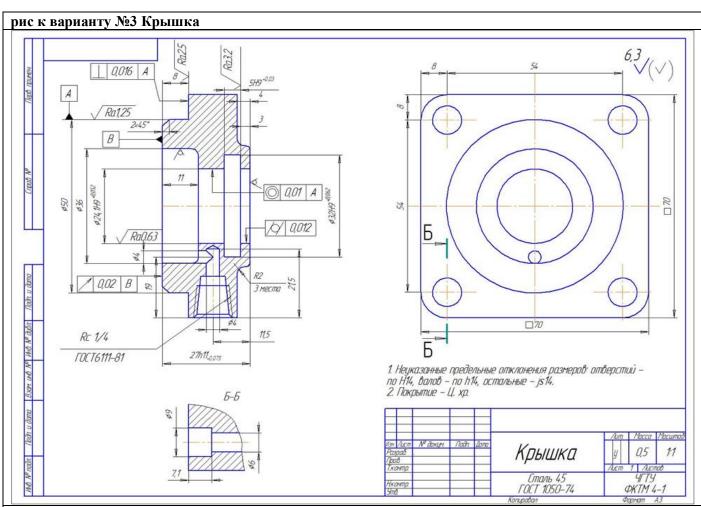
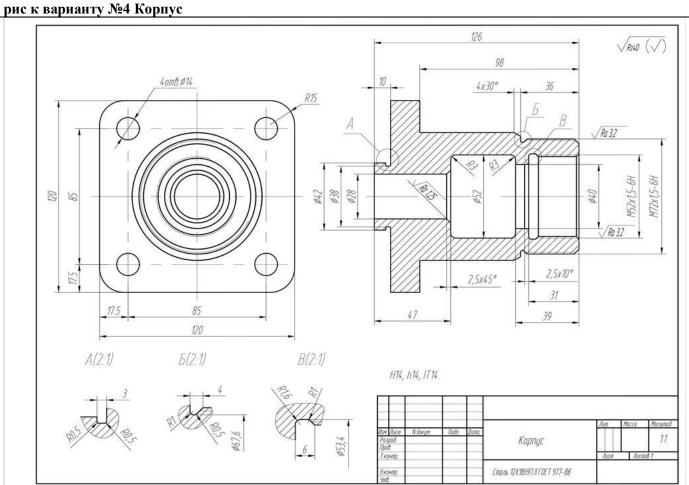
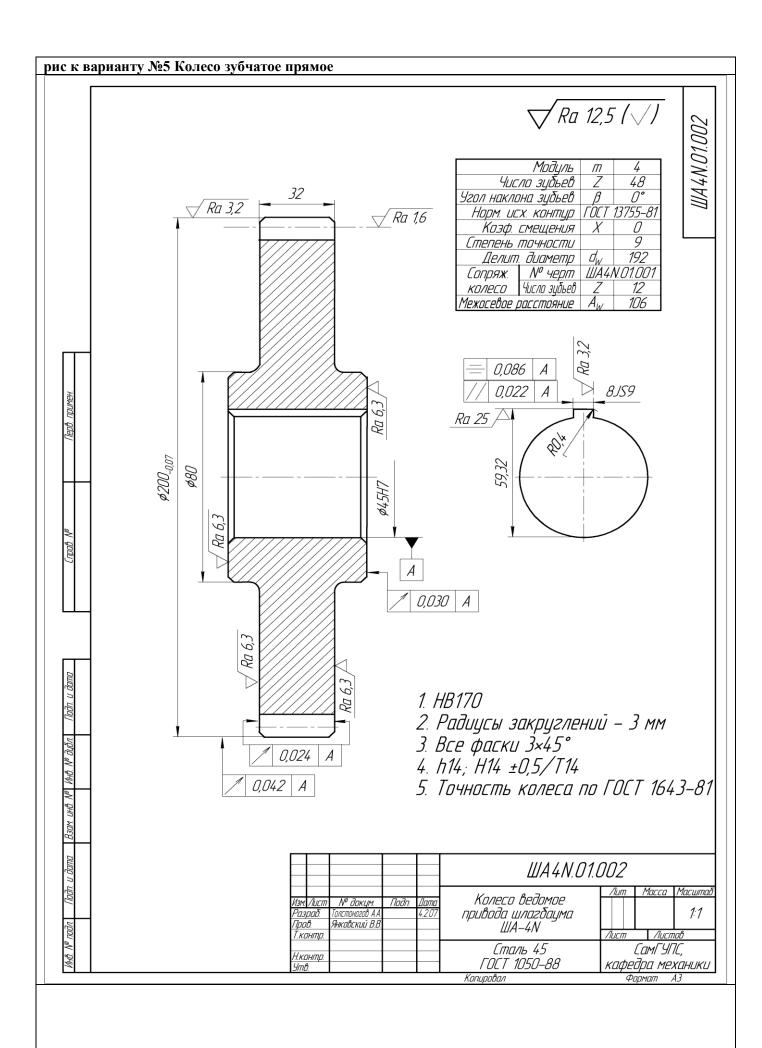



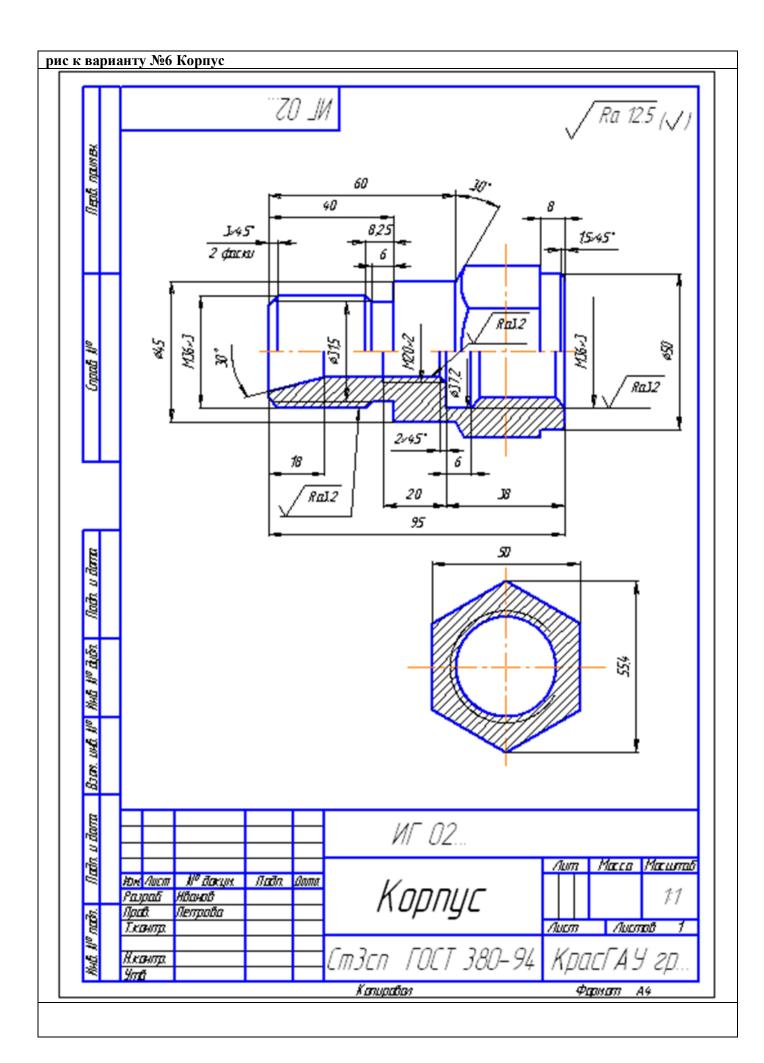
Рис.3 Схема контроля отклонения от симметричности калибром

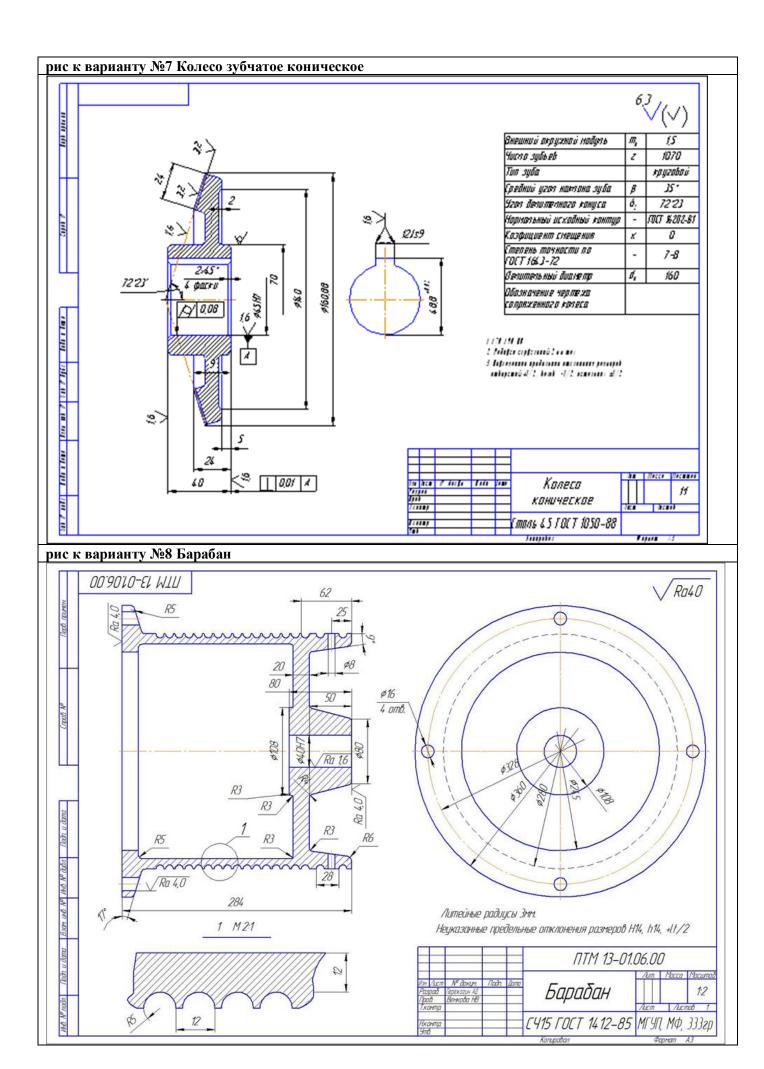


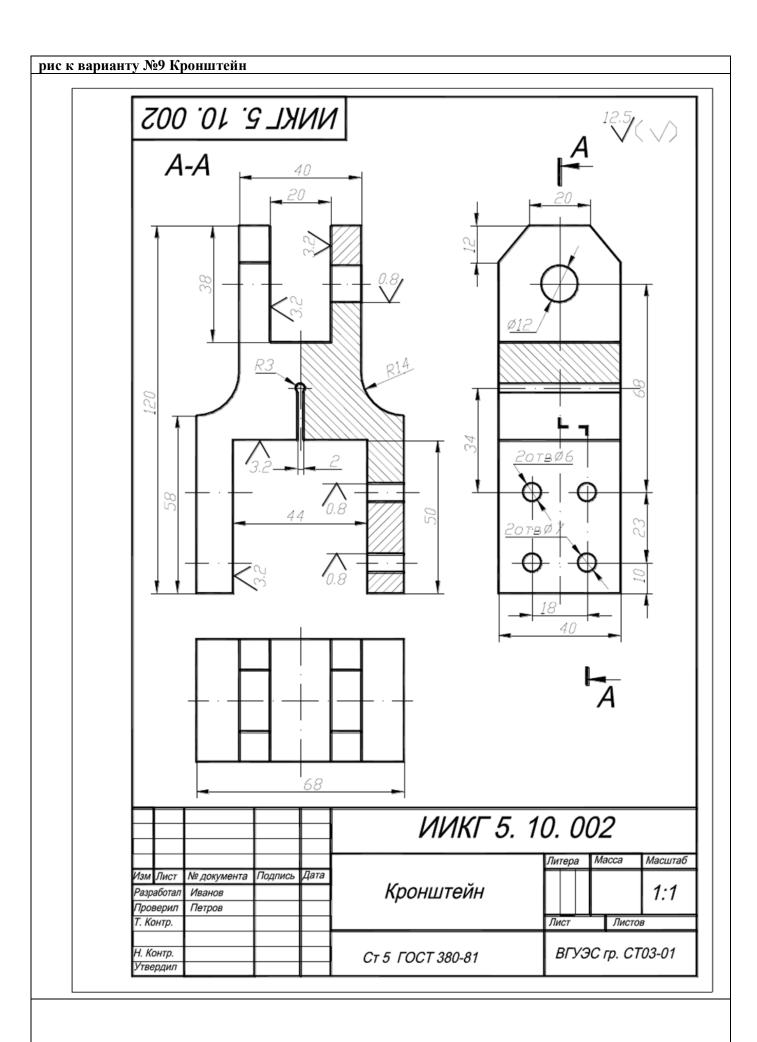

Рис.4. Схема контроля отклонения от параллельности шпоночного паза: 1-контрольная плита; 2,3-стойки (неподвижная и подвижная соответственно); 4,5-центры

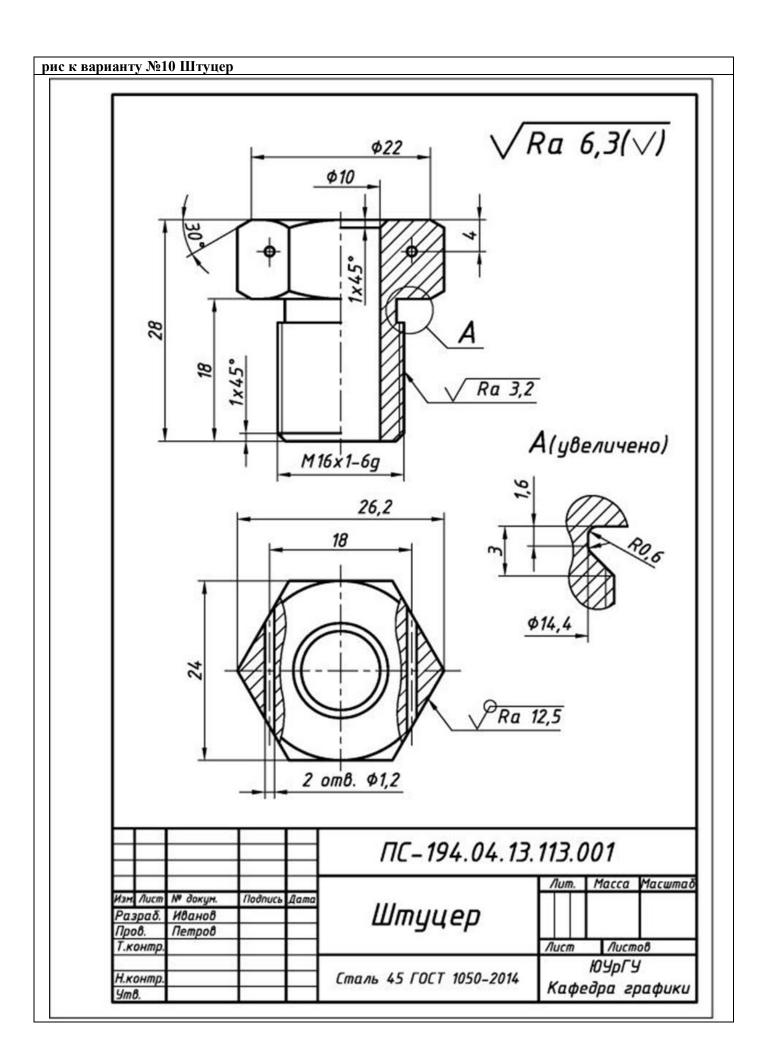

Литература, использованная в контрольной работе


- 1. ГОСТ 2590-2006 Прокат стальной горячекатаный. Сортамент.
- 2. Балабанов А.Н. Краткий справочник технолога-машиностроителя.- М.: Издательство стандартов, 1992.-464с.


Φοριμοπ







1.Вопросы (задания), включаемые в тесты Тест №1.

1. Единичное производство – это:

- А) фиксированное положение заготовки совместно с приспособлением относительно инструмента;
- В) часть технологической операции, выполняемая при неизменном закреплении заготовки;
 - С) производство неповторяющихся изделий при их широкой номенклатуре;
 - D) производство большого количества изделий ограниченной номенклатуры;
- Е) производство изделий одной номенклатуры в течение длительного времени.

2. Дайте определение термину - единичное производство:

- А) фиксированное положение заготовки совместно с приспособлением относительно инструмента;
- В) часть технологической операции, выполняемая при неизменном закреплении заготовки;
 - С) производство неповторяющихся изделий при их широкой номенклатуре;
 - D) производство большого количества изделий ограниченной номенклатуры;
- Е) производство изделий одной номенклатуры в течение длительного времени.

3. Массовое производство – это:

- А) фиксированное положение заготовки совместно с приспособлением относительно инструмента;
- В) часть технологической операции, выполняемая при неизменном закреплении заготовки;
 - С) производство неповторяющихся изделий при их широкой номенклатуре;
 - D) производство большого количества изделий ограниченной номенклатуры;
- Е) производство изделий одной номенклатуры в течение длительного времени.

4. Дайте определение термину - массовое производство:

- А) фиксированное положение заготовки совместно с приспособлением относительно инструмента;
- В) часть технологической операции, выполняемая при неизменном закреплении заготовки;
 - С) производство неповторяющихся изделий при их широкой номенклатуре;
 - D) производство большого количества изделий ограниченной номенклатуры;
- Е) производство изделий одной номенклатуры в течение длительного времени.

5. Серийное производство – это:

- А) фиксированное положение заготовки совместно с приспособлением относительно инструмента;
- В) часть технологической операции, выполняемая при неизменном закреплении заготовки;
 - С) производство неповторяющихся изделий при их широкой номенклатуре;

- D) производство большого количества изделий ограниченной номенклатуры;
- Е) производство изделий одной номенклатуры в течение длительного времени.

6. Дайте определение термину - серийное производство:

- А) фиксированное положение заготовки совместно с приспособлением относительно инструмента;
- В) часть технологической операции, выполняемая при неизменном закреплении заготовки;
 - С) производство неповторяющихся изделий при их широкой номенклатуре;
 - D) производство большого количества изделий ограниченной номенклатуры;
- Е) производство изделий одной номенклатуры в течение длительного времени.

7. Установ – это:

- А) фиксированное положение заготовки совместно с приспособлением относительно инструмента;
- В) часть технологической операции, выполняемая при неизменном закреплении заготовки;
 - С) производство неповторяющихся изделий при их широкой номенклатуре;
 - D) производство большого количества изделий ограниченной номенклатуры;
- Е) производство изделий одной номенклатуры в течение длительного времени.

8. Дайте определение термину - установ:

- А) фиксированное положение заготовки совместно с приспособлением относительно инструмента;
- В) часть технологической операции, выполняемая при неизменном закреплении заготовки;
 - С) производство неповторяющихся изделий при их широкой номенклатуре;
 - D) производство большого количества изделий ограниченной номенклатуры;
- Е) производство изделий одной номенклатуры в течение длительного времени.

9. Позиция – это:

- А) фиксированное положение заготовки совместно с приспособлением относительно инструмента;
- В) часть технологической операции, выполняемая при неизменном закреплении заготовки;
 - С) производство неповторяющихся изделий при их широкой номенклатуре;
 - D) производство большого количества изделий ограниченной номенклатуры;
- Е) производство изделий одной номенклатуры в течение длительного времени.

10. Дайте определение термину - позиция:

- А) фиксированное положение заготовки совместно с приспособлением относительно инструмента;
- В) часть технологической операции, выполняемая при неизменном закреплении заготовки;
 - С) производство неповторяющихся изделий при их широкой номенклатуре;
 - D) производство большого количества изделий ограниченной номенклатуры;

Е) производство изделий одной номенклатуры в течение длительного времени.

11. Производственный процесс – это:

- А) предмет, являющийся продуктом конечной стадии производства;
- В) совокупность всех действий людей и орудий производства для превращения полуфабрикатов в изделия;
- С) действие по изменению формы, размеров и качества предметов производства;
- D) законченная часть технологического процесса, выполняемая на одном рабочем месте;
- Е) законченная часть операции, характеризуемая постоянством применяемого инструмента и обрабатываемых поверхностей.

12. Дайте определение термину - производственный процесс:

- А) предмет, являющийся продуктом конечной стадии производства;
- В) совокупность всех действий людей и орудий производства для превращения полуфабрикатов в изделия;
- С) действие по изменению формы, размеров и качества предметов производства;
- D) законченная часть технологического процесса, выполняемая на одном рабочем месте;
- Е) законченная часть операции, характеризуемая постоянством применяемого инструмента и обрабатываемых поверхностей.

13. Технологический процесс – это:

- А) предмет, являющийся продуктом конечной стадии производства;
- В) совокупность всех действий людей и орудий производства для превращения полуфабрикатов в изделия;
- С) действие по изменению формы, размеров и качества предметов производства;
- D) законченная часть технологического процесса, выполняемая на одном рабочем месте;
- Е) законченная часть операции, характеризуемая постоянством применяемого инструмента и обрабатываемых поверхностей.

14. Дайте определение термину - технологический процесс:

- А) предмет, являющийся продуктом конечной стадии производства;
- В) совокупность всех действий людей и орудий производства для превращения полуфабрикатов в изделия;
- С) действие по изменению формы, размеров и качества предметов производства;
- D) законченная часть технологического процесса, выполняемая на одном рабочем месте;
- Е) законченная часть операции, характеризуемая постоянством применяемого инструмента и обрабатываемых поверхностей.

15. Технологический переход – это:

- А) предмет, являющийся продуктом конечной стадии производства;
- В) совокупность всех действий людей и орудий производства для превращения полуфабрикатов в изделия;

- С) действие по изменению формы, размеров и качества предметов производства;
- D) законченная часть технологического процесса, выполняемая на одном рабочем месте;
- Е) законченная часть операции, характеризуемая постоянством применяемого инструмента и обрабатываемых поверхностей.

16. Дайте определение термину - технологический переход:

- А) предмет, являющийся продуктом конечной стадии производства;
- В) совокупность всех действий людей и орудий производства для превращения полуфабрикатов в изделия;
- С) действие по изменению формы, размеров и качества предметов производства;
- D) законченная часть технологического процесса, выполняемая на одном рабочем месте;
- Е) законченная часть операции, характеризуемая постоянством применяемого инструмента и обрабатываемых поверхностей.

17. Технологическая операция это:

- А) предмет, являющийся продуктом конечной стадии производства;
- В) совокупность всех действий людей и орудий производства для превращения полуфабрикатов в изделия;
- С) действие по изменению формы, размеров и качества предметов производства;
- D) законченная часть технологического процесса, выполняемая на одном рабочем месте;
- Е) законченная часть операции, характеризуемая постоянством применяемого инструмента и обрабатываемых поверхностей.

18. Дайте определение термину - технологическая операция:

- А) предмет, являющийся продуктом конечной стадии производства;
- В) совокупность всех действий людей и орудий производства для превращения полуфабрикатов в изделия;
- С) действие по изменению формы, размеров и качества предметов производства;
- D) законченная часть технологического процесса, выполняемая на одном рабочем месте;
- Е) законченная часть операции, характеризуемая постоянством применяемого инструмента и обрабатываемых поверхностей.

19. Изделие – это:

- А) предмет, являющийся продуктом конечной стадии производства;
- В) совокупность всех действий людей и орудий производства для превращения полуфабрикатов в изделия;
- С) действие по изменению формы, размеров и качества предметов производства;
- D) законченная часть технологического процесса, выполняемая на одном рабочем месте;
- Е) законченная часть операции, характеризуемая постоянством применяемого инструмента и обрабатываемых поверхностей.

20. Дайте определение термину - изделие:

- А) предмет, являющийся продуктом конечной стадии производства;
- В) совокупность всех действий людей и орудий производства для превращения полуфабрикатов в изделия;
- С) действие по изменению формы, размеров и качества предметов производства;
- D) законченная часть технологического процесса, выполняемая на одном рабочем месте;
- Е) законченная часть операции, характеризуемая постоянством применяемого инструмента и обрабатываемых поверхностей.

21. Шероховатость, это:

- А) отношение радиальной составляющей силы резания к смещению лезвия инструмента;
 - В) совокупность неровностей, образующих микрорельеф поверхностей;
- С) величина, обратная отношению радиальной составляющей силы резания к смещению лезвия инструмента;
- D) периодически повторяющиеся возвышения с шагом, превышающим длину участка измерения;
- Е) совокупность допусков, соответствующих одинаковой степени точности для всех номинальных размеров.

22. Дайте определение термину - шероховатость:

- А) отношение радиальной составляющей силы резания к смещению лезвия инструмента;
 - В) совокупность неровностей, образующих микрорельеф поверхностей;
- С) величина, обратная отношению радиальной составляющей силы резания к смещению лезвия инструмента;
- D) периодически повторяющиеся возвышения с шагом, превышающим длину участка измерения;
- Е) совокупность допусков, соответствующих одинаковой степени точности для всех номинальных размеров.

23. Жёсткость системы СПИД, это:

- А) отношение радиальной составляющей силы резания к смещению лезвия инструмента;
 - В) совокупность неровностей, образующих микрорельеф поверхностей;
- С) величина, обратная отношению радиальной составляющей силы резания к смещению лезвия инструмента;
- D) периодически повторяющиеся возвышения с шагом, превышающим длину участка измерения;
- Е) совокупность допусков, соответствующих одинаковой степени точности для всех номинальных размеров;

24. Дайте определение термину - жёсткость системы СПИД:

- А) отношение радиальной составляющей силы резания к смещению лезвия инструмента;
 - В) совокупность неровностей, образующих микрорельеф поверхностей;
- С) величина, обратная отношению радиальной составляющей силы резания к смещению лезвия инструмента;

- D) периодически повторяющиеся возвышения с шагом, превышающим длину участка измерения;
- Е) совокупность допусков, соответствующих одинаковой степени точности для всех номинальных размеров;

25. Допуск - это:

- А) разность между действительным и номинальным значениями размера или геометрического параметра;
- В) степень приближения действительных размеров и геометрических параметров к номинальным значениям на чертежах;
 - С) разность между наибольшим и наименьшим предельными размерами;
 - D) точность размеров;
 - Е) точность взаимного расположения поверхностей.

26. Дайте определение термину - допуск:

- А) разность между действительным и номинальным значениями размера или геометрического параметра;
- В) степень приближения действительных размеров и геометрических параметров к номинальным значениям на чертежах;
 - С) разность между наибольшим и наименьшим предельными размерами;
 - D) точность размеров;
 - Е) точность взаимного расположения поверхностей.

27 Размерная точность - это:

- А) разность между действительным и номинальным значениями размера или геометрического параметра;
- В) степень приближения действительных размеров и геометрических параметров к номинальным значениям на чертежах;
 - С) разность между наибольшим и наименьшим предельными размерами;
 - D) точность размеров;
 - Е)точность взаимного расположения поверхностей.

28. Дайте определение термину - размерная точность:

- А) разность между действительным и номинальным значениями размера или геометрического параметра;
- В) степень приближения действительных размеров и геометрических параметров к номинальным значениям на чертежах;
 - С) разность между наибольшим и наименьшим предельными размерами;
 - D) точность размеров;
 - Е)точность взаимного расположения поверхностей.

29. Погрешность - это:

- А) разность между действительным и номинальным значениями размера или геометрического параметра;
- В) степень приближения действительных размеров и геометрических параметров к номинальным значениям на чертежах;
 - С) разность между наибольшим и наименьшим предельными размерами;
 - D) точность размеров;
 - Е) точность взаимного расположения поверхностей.

30. Дайте определение термину - погрешность:

- А) разность между действительным и номинальным значениями размера или геометрического параметра;
- В) степень приближения действительных размеров и геометрических параметров к номинальным значениям на чертежах;
 - С) разность между наибольшим и наименьшим предельными размерами;
 - D) точность размеров;
 - Е) точность взаимного расположения поверхностей.

31. Пространственная точность - это:

- А) разность между действительным и номинальным значениями размера или геометрического параметра;
- В) степень приближения действительных размеров и геометрических параметров к номинальным значениям на чертежах;
 - С) разность между наибольшим и наименьшим предельными размерами;
 - D) точность размеров;
 - Е) точность взаимного расположения поверхностей.

32. Дайте определение термину - пространственная точность:

- А) разность между действительным и номинальным значениями размера или геометрического параметра;
- В) степень приближения действительных размеров и геометрических параметров к номинальным значениям на чертежах;
 - С) разность между наибольшим и наименьшим предельными размерами;
 - D) точность размеров;
 - Е) точность взаимного расположения поверхностей.

33. Точность - это:

- А) разность между действительным и номинальным значениями размера или геометрического параметра;
- В) степень приближения действительных размеров и геометрических параметров к номинальным значениям на чертежах;
 - С) разность между наибольшим и наименьшим предельными размерами;
 - D) точность размеров;
 - Е) точность взаимного расположения поверхностей.

34. Дайте определение термину - точность:

- А) разность между действительным и номинальным значениями размера или геометрического параметра;
- В) степень приближения действительных размеров и геометрических параметров к номинальным значениям на чертежах;
 - С) разность между наибольшим и наименьшим предельными размерами;
 - D) точность размеров;
 - Е) точность взаимного расположения поверхностей.

35. Измерительная база – это:

- А) база, используемая для определения положения детали в изделии;
- В) придание заготовке требуемого положения относительно системы координат станка;
 - С) база для определения положения присоединяемого изделия;
- D) база, используемая для определения положения заготовки в процессе ее обработки;

Е) база для определения относительного положения измеряемой поверхности и отсчета размеров.

36. Дайте определение термину - измерительная база:

- А) база, используемая для определения положения детали в изделии;
- В) придание заготовке требуемого положения относительно системы координат станка;
 - С) база для определения положения присоединяемого изделия;
- D) база, используемая для определения положения заготовки в процессе ее обработки;
- Е) база для определения относительного положения измеряемой поверхности и отсчета размеров.

37. Технологическая база – это:

- А) база, используемая для определения положения детали в изделии;
- В) придание заготовке требуемого положения относительно системы координат станка;
 - С) база для определения положения присоединяемого изделия;
- D) база, используемая для определения положения заготовки в процессе ее обработки;
- Е) база для определения относительного положения измеряемой поверхности и отсчета размеров.

38. Дайте определение термину - технологическая база:

- А) база, используемая для определения положения детали в изделии;
- В) придание заготовке требуемого положения относительно системы координат станка;
 - С) база для определения положения присоединяемого изделия;
- D) база, используемая для определения положения заготовки в процессе ее обработки;
- Е) база для определения относительного положения измеряемой поверхности и отсчета размеров.

39. Вспомогательная конструкторская база – это:

- А) база, используемая для определения положения детали в изделии;
- В) придание заготовке требуемого положения относительно системы координат станка;
 - С) база для определения положения присоединяемого изделия;
- D) база, используемая для определения положения заготовки в процессе ее обработки;
- Е) база для определения относительного положения измеряемой поверхности и отсчета размеров.

40. Дайте определение термину - вспомогательная конструкторская база:

- А) база, используемая для определения положения детали в изделии;
- В) придание заготовке требуемого положения относительно системы координат станка;
 - С) база для определения положения присоединяемого изделия;
- D) база, используемая для определения положения заготовки в процессе ее обработки;

Е) база для определения относительного положения измеряемой поверхности и отсчета размеров.

41. Основная конструкторская база это:

- А) база, используемая для определения положения детали в изделии;
- В) придание заготовке требуемого положения относительно системы координат станка;
 - С) база для определения положения присоединяемого изделия;
- D) база, используемая для определения положения заготовки в процессе ее обработки;
- Е) база для определения относительного положения измеряемой поверхности и отсчета размеров.

42. Дайте определение термину - основная конструкторская база:

- А) база, используемая для определения положения детали в изделии;
- В) придание заготовке требуемого положения относительно системы координат станка;
 - С) база для определения положения присоединяемого изделия;
- D) база, используемая для определения положения заготовки в процессе ее обработки;
- Е) база для определения относительного положения измеряемой поверхности и отсчета размеров.

43. Базирование – это:

- А) база, используемая для определения положения детали в изделии;
- В) придание заготовке требуемого положения относительно системы координат станка;
 - С) база для определения положения присоединяемого изделия;
- D) база, используемая для определения положения заготовки в процессе ее обработки;
- Е) база для определения относительного положения измеряемой поверхности и отсчета размеров;

44. Дайте определение термину - базирование:

- А) база, используемая для определения положения детали в изделии;
- В) придание заготовке требуемого положения относительно системы координат станка;
 - С) база для определения положения присоединяемого изделия;
- D) база, используемая для определения положения заготовки в процессе ее обработки;
- Е) база для определения относительного положения измеряемой поверхности и отсчета размеров;

45. Общий припуск – это:

- А) слой металла, предназначенный для снятия на одной операции.
- В) минимально необходимая толщина слоя металла для выполнения операции.
- С) слой металла, предназначенный для снятия, при выполнении всех операций.
 - D) припуск для обработки поверхностей тел вращения.

Е) поверхностный слой металла, у которого структура, химический состав, механические свойства отличаются от основного металла.

46. Дайте определение термину - общий припуск:

- А) слой металла, предназначенный для снятия на одной операции.
- В) минимально необходимая толщина слоя металла для выполнения операции.
- С) слой металла, предназначенный для снятия, при выполнении всех операций.
 - D) припуск для обработки поверхностей тел вращения.
- Е) поверхностный слой металла, у которого структура, химический состав, механические свойства отличаются от основного металла.

47. Симметричный припуск – это:

- А) слой металла, предназначенный для снятия на одной операции;
- В) минимально необходимая толщина слоя металла для выполнения операции;
- С) слой металла, предназначенный для снятия, при выполнении всех операций;
 - D) припуск для обработки поверхностей тел вращения;
- Е) поверхностный слой металла, у которого структура, химический состав, механические свойства отличаются от основного металла.

48. Дайте определение термину - симметричный припуск:

- А) слой металла, предназначенный для снятия на одной операции;
- В) минимально необходимая толщина слоя металла для выполнения операции;
- С) слой металла, предназначенный для снятия, при выполнении всех операций;
 - D) припуск для обработки поверхностей тел вращения;
- Е) поверхностный слой металла, у которого структура, химический состав, механические свойства отличаются от основного металла.

49. Дефектный слой – это:

- А) слой металла, предназначенный для снятия на одной операции;
- В) минимально необходимая толщина слоя металла для выполнения операции;
- С) слой металла, предназначенный для снятия, при выполнении всех операций;
 - D) припуск для обработки поверхностей тел вращения;
- Е) поверхностный слой металла, у которого структура, химический состав, механические свойства отличаются от основного металла.

50. Дайте определение термину - дефектный слой:

- А) слой металла, предназначенный для снятия на одной операции;
- В) минимально необходимая толщина слоя металла для выполнения операции;
- С) слой металла, предназначенный для снятия, при выполнении всех операций;
 - D) припуск для обработки поверхностей тел вращения;

Е) поверхностный слой металла, у которого структура, химический состав, механические свойства отличаются от основного металла.

51. Минимальный припуск – это:

- А) слой металла, предназначенный для снятия на одной операции;
- В) минимально необходимая толщина слоя металла для выполнения операции;
- С) слой металла, предназначенный для снятия, при выполнении всех операций;
 - D) припуск для обработки поверхностей тел вращения;
- Е) поверхностный слой металла, у которого структура, химический состав, механические свойства отличаются от основного металла.

52. Дайте определение термину - минимальный припуск:

- А) слой металла, предназначенный для снятия на одной операции;
- В) минимально необходимая толщина слоя металла для выполнения операции;
- С) слой металла, предназначенный для снятия, при выполнении всех операций;
 - D) припуск для обработки поверхностей тел вращения;
- Е) поверхностный слой металла, у которого структура, химический состав, механические свойства отличаются от основного металла.

53. Операционный припуск – это:

- А) слой металла, предназначенный для снятия на одной операции;
- В) минимально необходимая толщина слоя металла для выполнения операции;
- С) слой металла, предназначенный для снятия, при выполнении всех операций;
 - D) припуск для обработки поверхностей тел вращения;
- Е) поверхностный слой металла, у которого структура, химический состав, механические свойства отличаются от основного металла.

54. Дайте определение термину - операционный припуск:

- А) слой металла, предназначенный для снятия на одной операции;
- В) минимально необходимая толщина слоя металла для выполнения операции;
- С) слой металла, предназначенный для снятия, при выполнении всех операций;
 - D) припуск для обработки поверхностей тел вращения;
- Е) поверхностный слой металла, у которого структура, химический состав, механические свойства отличаются от основного металла.

55. Исходная заготовка – это:

- А) отрезок из конструктивного материала подготовленный к механической обработке;
- В) отрезки проката, поковки, штамповки, отливки из конструкционного материала, предназначенные для изготовления деталей механической обработкой;
- С) отрезок конструкционного материала, обработанный несколькими операциями и подлежащий дальнейшей обработке;

- D) круглый прокат обычной и повышенной точности;
- Е) круглая калиброванная сталь повышенной точности с улучшенной отделкой поверхности.

56. Дайте определение термину - исходная заготовка:

- А) отрезок из конструктивного материала подготовленный к механической обработке;
- В) отрезки проката, поковки, штамповки, отливки из конструкционного материала, предназначенные для изготовления деталей механической обработкой;
- С) отрезок конструкционного материала, обработанный несколькими операциями и подлежащий дальнейшей обработке;
 - D) круглый прокат обычной и повышенной точности;
- Е) круглая калиброванная сталь повышенной точности с улучшенной отделкой поверхности.

57. Контроль диаметров валов выполняется с помощью:

- А) предельных скоб, микрометра, штангенциркуля;
- В) предельных шаблонов, линейных скоб;
- С) приборов индикаторного типа;
- D) проходного комплексного шлицевого кольца;
- Е) предельных проходных и непроходных резьбовых колец.

58. Какими инструментами выполняется контроль диаметров валов:

- А) предельными скобами, микрометрами, штангенциркулями;
- В) предельными шаблонами, линейными скобами;
- С) приборами индикаторного типа;
- D) проходными комплексными шлицевыми кольцами;
- Е) предельными проходными и непроходными резьбовыми кольцами.

59. Контроль длин участков валов выполняется с помощью:

- А) предельных скоб, микрометра, штангенциркуля;
- В) предельных шаблонов, линейных скоб;
- С) приборов индикаторного типа;
- D) проходного комплексного шлицевого кольца;
- Е) предельных проходных и непроходных резьбовых колец.

60. Контроль биения поверхности валов относительно оси выполняется с помощью:

- А) предельных скоб, микрометра, штангенциркуля;
- В) предельных шаблонов, линейных скоб;
- С) приборов индикаторного типа;
- D) проходного комплексного шлицевого кольца;
- Е) предельных проходных и непроходных резьбовых колец.

61. Какими инструментами выполняется контроль биения поверхности валов относительно оси:

- А) предельными скобами, микрометрами, штангенциркулями;
- В) предельными шаблонами, линейными скобами;
- С) приборами индикаторного типа;
- D) проходными комплексными шлицевыми кольцами;
- Е) предельными проходными и непроходными резьбовыми кольцами.

Тест №2 . Укажите метод обеспечения точности при селективной сборке

- а) жёсткие допуски на размеры всех звеньев размерной цепи;
- б) широкие допуски на размеры всех звеньев размерной цепи4
- в) групповая взаимозаменяемость;
- г) полная взаимозаменяемость.

2. Преимущества поперечно-прессовой посадки перед продольно-прессовой

- а) низкая точность изготовления сопрягаемых деталей;
- б) более высокая эксплуатационная надёжность соединения;
- в) не даёт преимуществ;
- г) продольно-прессовая посадка предпочтительнее.

3. Назовите наиболее надёжный способ фиксации шпильки в глухом отверстии, предотвращающий её самоотвинчивание при свинчивании гайки

- а) упором в дно глухого отверстия;
- б) сбегом неполной резьбы шпильки;
- в) натягом по среднему диаметру резьбы;
- г) упорным буртом на теле шпильки.

4. При каком способе затяжки резьбового соединения обеспечивается условие нераскрытия стыка?

- а) с предварительной затяжкой;
- б) без предварительной затяжки;
- в) моментным ключом;
- г) путём упругого деформирования крепёжного элемента.

5. Укажите основной недостаток шпоночного соединения

- а) возможность среза шпонки;
- б) возможность смятия шпоночного паза;
- в) увеличение сечения вала для обеспечения его прочности;
- г) усталостное разрушение вала в ходе эксплуатации.

6. Какие из тепловых методов применяют для получения соединений с гарантированным натягом?

- а) газовой горелкой или паяльной лампой;
- б) глубокое охлаждение охватывающей детали;
- в) нагрев детали в печи;
- г) нагрев в масляной ванне.

7. Укажите основной недостаток подготовки кромок под сварку шлифовальным кругом

- а) неточность разделки;
- б) наличие микрочастиц абразива в свариваемом материале;
- в) нагрев металла в месте разделки, пригары, изменение структуры;
- г) деформация кромок при разделке.

8. Укажите какие из перечисленных соединений относятся к неподвижным разъёмным;

а) посадка с натягом;

- б) шлицевое;
- в) клеяное;
- г) клёпаное.

9. Почему нельзя соединять сваркой тонкостенные детали машин?

- а) появление остаточных напряжений по окончании процесса;
- б) плохое восприятие знакопеременных нагрузок, особенно вибраций;
- в) коробление детали в процессе сварки;
- г) сложность и трудоёмкость контроля.

10. В каком случае применён способ самоконтрящихся резьбовых соединений?

- а) применение пружинной гравёрной шайбы;
- б) кернение резьбы шпильки;
- в) применение кольца с полиамидом;
- г) специальной отгибной шайбой.

11. Объясните сущность пригонки шабрением по маякам

- а) строгание широким резцом со смазкой или охлаждением;
- б) припасовка деталей по предварительной разметке;
- в) пригонка поверхности по отпечаткам краски;
- г) пригонка поверхности по предварительно нанесённым кернениям.

12. Какие способы подбора поршней к цилиндрам Вам знакомы?

- а) по размеру юбки;
- б) индивидуальной подгонкой;
- в) по форме;
- г) по размерам поршневых колец.

13. Как отрегулировать ход ползуна кулисного механизма?

- а) изменить размеры кулисного камня;
- б) изменить размеры вилки, соединённой с ползуном;
- в) переместить камень вдоль паза кулисы;
- г) изменить размеры кривошипного диска.

14. Почему после запрессовки антифрикционной втулки в верхнюю головку шатуна необходима её дополнительная механическая обработка?

- а) из-за деформации тела шатуна;
- б) деформация тела втулки в результате запрессовки;
- в) наличие исходного припуска;
- г) перекос втулки.

15. Для каких целей в пластинчатом насосе статор имеет внутреннюю профилированную поверхность?

- а) снижение износа при контакте с лопатками;
- б) обеспечивает высокую степень герметичности с распредилительными дисками;
 - в) обеспечивает за один оборот ротора два цикла всасывания;
- г) способствует регулированию скорости нагнетания, устраняя пульсации транспортируемой жидкости.

Вопросы для защиты лабораторных работ по дисциплине ТПХО

Лабораторная работа № 1. Определение жёсткости технологической системы СПИД

- 1. Дайте определение точности изготовления детали.
- 2. Взаимосвязь между жесткостью системы СПИД и точностью изготовления детали
- 3. Критерии, характеризующие точностные параметры детали на рабочем чертеже
 - 4. Методы определения жёсткости технологической системы СПИД
- 5. Приёмы достижения заданной жёсткости технологической системы СПИЛ
- 6. Что явилось причиной появления следующих дефектов, возникших при точении цилиндрической детали: конусность с основанием к задней бабке; корсетность
- 7. Что явилось причиной появления следующих дефектов, возникших при точении цилиндрической детали: диаметр больше заданного; бочкообразность
- 8. При точении цилиндрического вала обнаружена низкая жёсткость суппорта. Как это отразится на форме готового изделия?
- 9. При точении цилиндрической детали обнаружена низкая жёсткость резца. Как это отразится на форме изделия?
- 10. Способы достижения заданной жёсткости технологической системы СПИД
- 11. Взаимосвязь режима резания и жесткости технологической системы СПИД
 - 12. Способы определения радиальной составляющей силы резания
- 13. Взаимосвязь между износом режущего инструмента и жёсткостью технологической системы СПИД
 - 14. Определение суммарной погрешности механической обработки

Лабораторная работа №2. Определение погрешности установки по лимбу станка

- 1. Укажите технологические факторы, вызывающие первичные погрешности механической обработки
- 2. Классификация погрешностей обработки и методы расчёта точности изготовления детали
- 3. Методы достижения заданной точности в единичном и массовом производстве
 - 4. Причины появления случайной величины
- 5. Взаимосвязь между точностью и себестоимостью механической обработки
 - 6. Средняя экономически достижимая точность механической обработки

- 7. Принцип подхода к определению вероятного количества выхода годных деталей
 - 8. Законы распределения случайной величины
- 9. Понятие о качестве промышленной продукции. Комплексные критерии качества продукции
 - 10. Назначение размерных и кинематических связей в машине
- 11. Техническая норма времени, норма выработки, штучное время. Способы установки норм
- 12. Статистические методы регулирования технологического процесса. Точечная и точностная диаграммы
 - 13. Эксплуатационные показатели качества промышленной продукции
- 14. Эстетические показатели качества промышленной продукции. патентная чистота
- 15. Методика построения экспериментальной кривой распределения случайной величины
- 16. Анализ соответствия технических требований и норм точности на изготовление служебному назначению машины
 - 17. Выводы, сделанные по результатам выполненной лабораторной работы

Лабораторная работа № 3 Влияние режимов резания и геометрии режущего инструмента на качество обработанной поверхности

- 1. Перечислите основные отклонения геометрических параметров детали, возникающих при механической обработке
- 2. Волнистость и шероховатость обработанной поверхности. Критерии их характеризующие. Обозначение критериев качества поверхности на чертеже
 - 3. Методы измерения и контроля качества поверхности
- 4. Целенаправленное формирование качества поверхности детали методами технологического воздействия
- 5. Взаимосвязь между точностью детали и шероховатостью обработанной поверхности
- 6. Влияние качества обработанной поверхности на эксплуатационные характеристики деталей машин
- 7. Влияние структуры и свойств обрабатываемого материала на качество обработанной поверхности
- 8. Геометрия токарного резца. Взаимосвязь между геометрией режущего инструмента (в том числе и его износа) и качеством обработанной поверхности
- 9. Физические основы процесса резания металлов и особенности формирования структуры приповерхностного слоя
- 10. Силы, возникающие при точении и их влияние на качество поверхности детали
- 11. Принципы подхода к выбору режимов резания при механической обработке
 - 12. Прядок выполнения лабораторной работы. Результаты. Выводы

Лабораторная работа № 4 Погрешности установки и обработки при точении вала

- 1. Погрешности установки и причины их появления
- 2. Погрешности закрепления и способы управления ими
- 3. Базы. Их классификация и назначение
- 4. Базирование в машиностроении. Правила подхода к выбору баз
- 5. Черновая и чистовая базы. Требования к выбору черновой базы
- 6. Принципы постоянства и совмещения баз
- 7. Пересчёт размеров и допусков при смене баз
- 8. Основные схемы базирования призматической заготовки по опорным точкам
- 9. Влияние погрешностей станка и приспособления на точность изготовления детали
 - 10. Методы управления погрешностями установки
- 11. Способы простановки размеров на рабочем чертеже и их влияние на выбор баз и технологию обработки детали
 - 12. Влияние выбора режимов резания на точность детали
- 13. Определение погрешности базирования цилиндрической заготовки при установке на призме, на столе и в тисках
- 14. Методика выполнения лабораторной работы. Выводы по результатам выполнения

Лабораторная работа №5 Сборка машин

- 1. Организационные формы сборочных процессов
- 2.Перечислите исходные данные для проектирования технологического процесса сборки
 - 3. Методы обеспечения точности при сборке, виды сборочных операций
 - 4.Особенности построения технологической схемы сборки машины
 - 5. Средства оснащения сборочных процессов, приспособления и инструмент
- 6. Чем объясняется высокая трудоёмкость сборочных операций перед операциями механической обработки?
 - 7. Особенности сборки неподвижных неразъёмных соединений
 - 8. Особенности сборки неподвижных разъёмных соединений
 - 9. Особенности технологии сборки соединений с подшипниками качения
 - 10. Технологические особенности сборки шпоночных и шлицевых соединений
- 11. Достоинства и недостатка поперечнопрессовых и продольнопрессовх соединений
 - 12. Методы контроля качества сборки.
- **4. Вопросы к разделу**: «Безопасность труда при работе на металлообрабатывающем оборудовании»
 - 1.Общие троебования безопасной работы станочника
 - .1. Требования к организации рабочего места перед началом работы;
 - .2. Требования безопасности по окончании работы;
 - .3. Требования безопасности во время производства работы;
 - .4. Средства индивидуальной защиты станочника;
 - .5. Защитные и предохранительные устройства станков;

- .б. Производственные факторы, относимые к категории опасных и вредных;
- .7. Что следует понимать под такими терминами как:

несчастный случай на производстве;

охрана труда;

техника безопасности;

производственная санитария?

• Разновидности, содержание и цели проводимого на производстве инструктажа по технике безопасности:

вводный; внутреннего распорядка на предприятии;

особенностей работы в цехе (участке); требований пожарной безопасности;

требований соблюдения личной гигиены; правил оказания первой помощи пострадавшим; повторный инструктаж; внеплановый инструктаж; текущий инструктаж.

- Первая помощь при несчастных случаях и травмах
- .1. Первая помощь при поражении электрическим током
- .2. Приёмы выполнения искусственного дыхания
- .3. Первая помощь при ранениях и кровотечении
- .4. Первая помощь при ушибах и переломах
- .5. Первая помощь при ожогах, солнечном ударе и при засорении глаз

3. Вопросы к зачёту по дисциплине ТПХО

- 1.Предмет и задачи курса ТПХО. Дать определение терминам: «Машиностроение», «Технология», «Технология машиностроения», «Производство», «Продукция».
 - 2. Основные характеристики машиностроительного производства и его типы.
- 3. Основные изделия машиностроительного производства: изделие, деталь, заготовка, сборочная единица, комплекс, комплект.
- 4. Производственный процесс и его составляющие: технологический процесс, обработка, технологическая операция, вспомогательная операция, рабочее место. технологический маршрут, технологический переход, вспомогательный переход, рабочий ход, вспомогательный ход, установ, позиция.
 - 5. Служебное назначение машины. Виды связей в машине.
- 6. Продукция машиностроительного производства. Качество продукции и показатели её характеризующие.
- 7. Классификация поверхностей детали. Точность машины, детали и показатели её характеризующие.
- 8. Погрешность обработки и причины её появления. Методы определения точности.
- 9. Исходные данные для проектирования технологических процессов. Исходная, базовая, руководящая и справочная информация. Основные этапы разработки технологического процесса.
- 10. Технологический контроль рабочего чертежа и технических условий детали Выбор типа производства.
- 11. Трудоёмкость технологической операции: норма времени, норма выработки, штучное время, подготовительно-заключительное время, основное

время, вспомогательное время, время обслуживания рабочего места, время на личные потребности исполнителя. Методы установления норм времени.

- 12. Расчёт оперативного времени и его значение при определении штучного времени.
- 13. Дайте понятие о заготовке. Способы их получения. Принципы подхода к выбору заготовок: тип производства, габаритные размеры. материал, форма, масса, коэффициент использования материала.
- 14. Заготовки. Способы предварительной обработки в зависимости от метода их получения.
 - 15. Определение затрат на изготовление детали. Себестоимость изделия.
- 16. Разновидности припусков на обработку. Методы установления припусков и их сущность.
 - 17. Базирование. Виды баз. Правила выбора баз.
- 18. Первичные погрешности обработки. Погрешности установки: базирования, закрепления, приспособления.
- 19. Определение суммарной погрешности обработки. Методы достижения заданной точности получения детали. Средняя экономически достижимая точность определённого метода обработки.
- 20. Качество поверхности. Критерии её характеризующие. Влияние качества обработанной поверхности на эксплуатационные показатели деталей машин.
- 21. Влияние режимов резания и условий обработки на качество обработанной поверхности.
- 22. Порядок установления технологического маршрута обработки конкретной поверхности детали.
- 23. Общий порядок проектирование технологического маршрута изготовления детали. Принципы подхода к выбору наиболее рационального для данного типа производства.
- 24. Место термической обработки в технологическом маршруте и её влияние на технологические и эксплуатационные свойства деталей машин.
- 25. Порядок проектирования операционной технологии. Выбор оборудования и оснастки, режимов резания, режущего и измерительного инструмента.

Приложение 4

Образец титульного листа контрольной работы

Министерство науки и высшего образования РФ Российский химико-технологический университет им. Д.И.Менделеева Новомосковский институт (филиал)

Кафедра «Оборудование химических производств»

Контрольная работа№1 по дисциплине «Технология производства химического оборудования»

Вариант №____

Преподаватель	(личная подпись, дата)	(Ф.И.О.)	
Студент Группа _	(личная подпись, дата)	(Ф.И.О.)	
Шифр _			

Библиографический список

- 1. Мосталыгин Г.П., Толмачевский Н.Н. Технология машиностроения. Учебник для вузов по инженерно-экономическим специальностям. — М.: Машиностроение, 19900.-288с.
- 2. Данилевский В.В. справочник молодого машиностроителя. М. высшая школа, 1973.-647с.
- 3. Балабанов А.Н. Краткий справочник технолога-машиностроителя.- М.: Издательство стандартов, 1992. 464с.
- 4. Справочник технолога-машиностроителя/ Под ред. А.Г.Косиловой и Р.К. Мещерякова. М.: Машиностроение, 1985. Т.1.- 656с., т.2. 496с.
- 5. Металлорежущие станки. Учебник для студентов учреждений высшего профессионального образования. М. Издательский центр «Академия», 2012. Т.1.- 461с. Т.2 336с.
- 6. Общемашиностроительные нормативы времени и режимов резания для нормирования работ, выполняемых на универсальных и многоцелевых станках с ЧПУ. Часть 2. Нормативы и режимы резания. Дата актуализации 01.01.1019.
- 7. Муцянко В.И. Основы выбора шлифовальных кругов и подготовка их к эксплуатации/ Под ред. Л.Н. Филимонова 3-е изд. Л.: Машиностроение, Ленинградское от-е. 1987.-134с.
- 8. Козлов А.М. Учебно-методическое пособие к лабораторному практикуму по дисциплине «Технология производства химического оборудования»/ ФГБОУ ВО РХТУ им. Д.И.Менделеева, Новомосковский институт (филиал); Новомосковск, 2022. 128с.

Оглавление

	стр		
Введение	3		
1 Общие представления о содержании рабочей программы	4		
дисциплины «Технология производства химического			
оборудования»			
2 Методика выполнения контрольной работы по дисциплине	6		
ТПХО			
3 Варианты заданий для выполнения контрольной работы			
4 Пример выполнения контрольной работы			
Приложения			
Приложение 1 Рисунки к заданиям контрольной работы			
Приложение 2 Вопросы (задания), включаемые в тесты			
Приложение 3 Вопросы для защиты лабораторных работ по	39		
дисциплине ТПХО			
Приложение 4 Образец титульного листа контрольной работы			
Библиографический список	45		

Учебное издание

Козлов Александр Михайлович Бегова Анастасия Владимировна

Методические указания Технология производства химического оборудования

для студентов заочной формы обучения по направлению подготовки «Технологические машины и оборудование» профиль «Машины и аппараты химических производств»

Редактор Туманова Е.М. Подписано в печать Формат $60\times84^{1}/_{16}$ Бумага «Снегурочка». Отпечатано на ризографе. Усл. печ. л.____. Уч. изд. л.____ Тираж 50 экз. Заказ №

ФГБОУ ВО «Российский химико-технологический университет им. Д.И. Менделеева» Новомосковский институт (филиал). Издательский центр. Адрес университета: 125047, Москва, Миусская пл., 9 Адрес института: 301650, Новомосковск, Тульская обл.,